

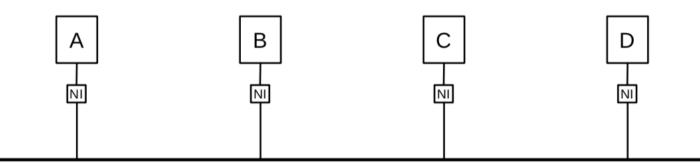
Computer Networking

COMP 177 | Fall 2020 | University of the Pacific | Jeff Shafer

Ethernet

Recap

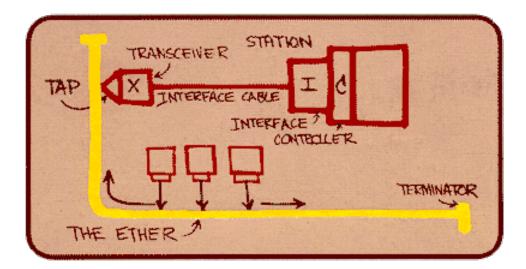
Past Topics


- An overview of computer networking
- Wireshark

Today's Topics

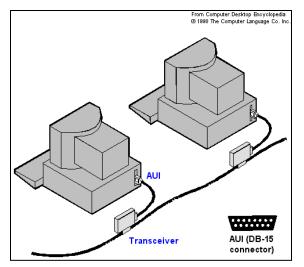
- **7** Ethernet
- **7** Hubs
- Switches
- Packet format in Ethernet
- MAC addresses

Classic Ethernet


- Ethernet is an IEEE standard for wired LANs IEEE 802.3
- A *data link* layer protocol, proposed in 1970s
- Initially was a bus topology for LANs
 - a long cable to which all devices are attached signal could be attenuated
 - Solution: coaxial cable rather than twisted pair copper wire!

Classic Ethernet

- Each device is connected to the bus through a hardware component called *network interface controller* (*NIC*)
- Each node in the LAN broadcasts its packet (called Ethernet frame) over the bus
- All NICs on a LAN can receive a transmitted packet
- A NIC decides whether to send the received packet to the operating system. How?
 - **7** Each Ethernet packet includes physical address of the destination NIC
 - Upon receiving a packet, NIC checks whether that address matches its own
 - If so, passes the packet to OS. Otherwise, drops it!
- Ethernet physical addresses are called MAC addresses
 - Medium Access Control

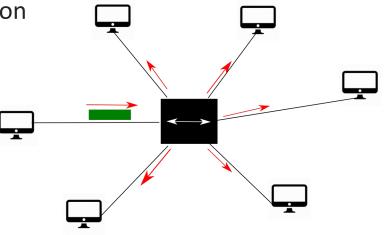

Classic Ethernet

Original picture drawn by Bob Metcalfe, inventor of Ethernet (1972 – Xerox PARC)

Ether – 19th century name for media enabling the propagation of light

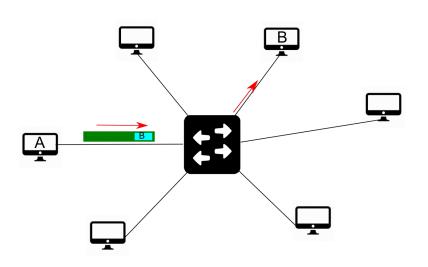
Collision Detection

- Broadcasting packets in a shared medium, e.g., a bus, may end in collision
 - ↗ If two packets collide, both transmissions fail

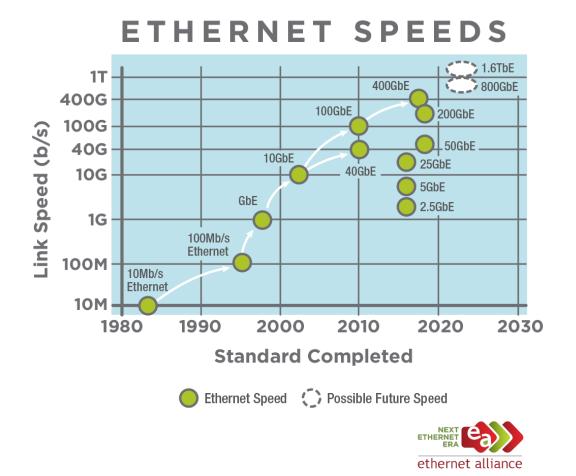


Animation from http://www.datacottage.com/nch/eoperation.htm

- Solution: Carrier Sense, Multiple Access, with Collision Detection (CSMA/CD)
 - **7** Before transmission, wait for the line to be quiet
 - **7** While transmitting, monitor the line
 - If collision detected, wait ("back off"), and then retransmit when quiet again


Ethernet: Hubs

- Hubs are *physical-layer* devices that interconnect machines within a LAN
- → With the rise of hubs, the bus topology for LANs diminished
- Hubs provided a cheaper solution for LANs
 - Twisted pair copper wire replaced coaxial cable
 - Shorter distances with less attenuation
 - - 10 Mbps / Twisted Pair
- Collisions could still occur in hubs
 - **↗** CSMA/CD is used!



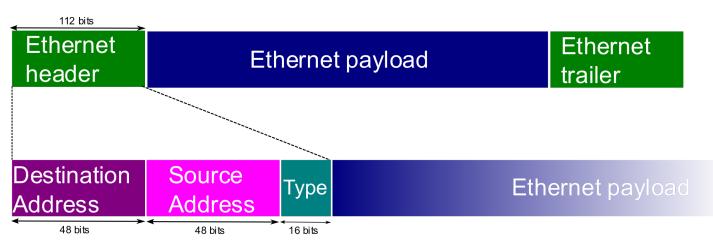
Ethernet: Switches

- Switches (aka bridges) have both physical and data link layers
- Switches process the incoming frame's destination physical address
 - Then, transmit the frame from the corresponding egress port
 - Reduces collisions & performance hit of CSMA/CD in LANs
- Switched LANs use twisted pair copper wire
- Moving from hubs to switches is straightforward

Ethernet Standards

Computer Networking

https://ethernetalliance.org/technology/2019-roadmap/


Ethernet Frame Format

- An Ethernet frame consists of three components
 - Header, comprised of some fields
 - ↗ 112 bits long
 - Payload is the network layer packet, e.g., an IP datagram
 - ↗ Up to 1500 bytes long
 - **7** *Trailer*, comprises of a single Ethernet field
 - オ 32 bits long

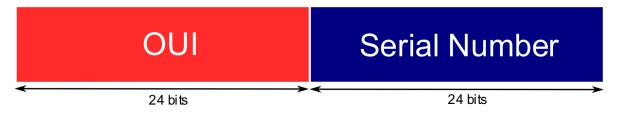
Ethernet header	Ethernet payload	Ethernet trailer
--------------------	------------------	---------------------

Ethernet Frame Format: Header

- Ethernet header has three fields:
 - Dest. MAC address (48 bits) physical addr. of NIC in receiving host
 - Source MAC address (48 bits) physical addr. of NIC in sending host
 - Type (16 bits) stores the upper layer protocol, i.e., the protocol used in the Ethernet payload
 - ↗ IPv4: 0x0800 IPv6: 0x86DD ARP: 0x0806

Ethernet Frame Format: Payload, Trailer

T Ethernet frame *payload*


- The packet coming from upper layer, i.e., network layer
- Payload size was limited to 1500 bytes in 10 Mbps LANs due to technological constraints
- 1500 bytes became the de facto maximum network layer packet size in the Internet
 - Jumbo Frames (non-standard): 9000 bytes
- **The Experiment Frame** *trailer*
 - Consists of a single 32-bit field: Cyclic redundancy check (CRC)
 - Computed based on the entire Ethernet frame
 - Used to identify bit flips (errors due to noise) during frame transmission

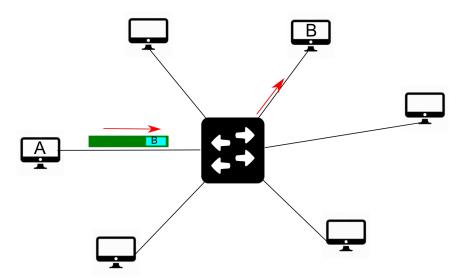
Promiscuous Mode

- **By** *default* upon receiving a frame
 - **NIC** reads the destination MAC address in frame header
 - If that address matches NIC's own address, then NIC sends the frame payload to the upper layer process
 - Otherwise, discards the frame
- **Promiscuous mode:**
 - NIC accepts all frames!
 - Independent of what the destination MAC address is, the payload is passed to the upper layer process
 - Allows machine to sniff all of frames transmitted in a LAN
 - **7** Used for diagnostic purposes (e.g. *Wireshark*)

MAC Addresses

- MAC addresses are 48 bits long
- Represented usually by sequence of 6 hex numbers separated by colon
 - **7** Example: **08**:**00**:**27**:**A8**:**69**:**6**C
- Higher 24 bits refer to manufacturer ID
 - Called Organizationally Unique Identifier (OUI)
 - Managed by IEEE
- ↗ Lower 24 bits refer to the serial number of NIC
 - Assigned by manufacturer of NIC

Broadcast & Multicast MAC Addresses

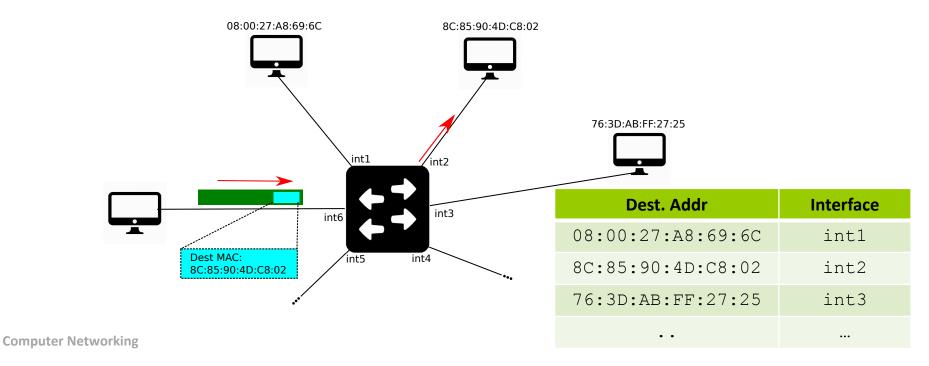

Broadcast MAC address

- **48** bits of 1: **FF:FF:FF:FF:FF:FF**
- **NIC** accepts all frames with destination broadcast address
- Multicast MAC address
 - **7** To transmit packets to a predefined set of receivers
 - **7** The host needs to register the multicast address in its NIC
 - If NIC receives a frame with the already-registered multicast destination address, accepts it
 - **7** Lowest bit in the first byte of address
 - O: physical (unicast) address
 - ↗ 1: multicast address

NIC and Destination MAC Address

- NIC accepts an Ethernet frame according to its destination MAC if
 - Destination MAC address is the same as NIC's MAC address, or
 - Destination MAC address is *broadcast* MAC address, or
 - Destination MAC address is an already-registered multicast address, or
 - **NIC** is in promiscuous mode
- Otherwise, the NIC *drops* the frame

- A switch has multiple Ethernet interfaces
- Upon receiving a frame, the switch
 - Examines the destination MAC address in the frame's header
 - Sends the packet through the appropriate Ethernet interface to the device with that destination MAC address

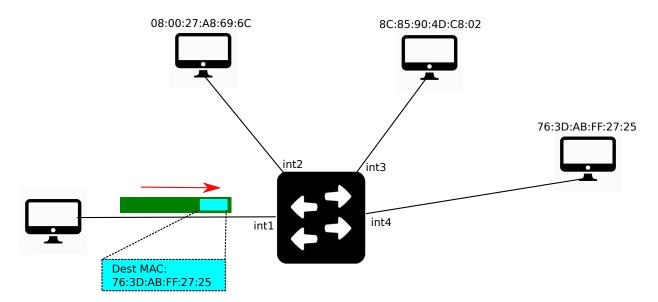


Question: How does a switch identify the egress interface?

Answer: By maintaining a forwarding table!

A switch forwarding table maps

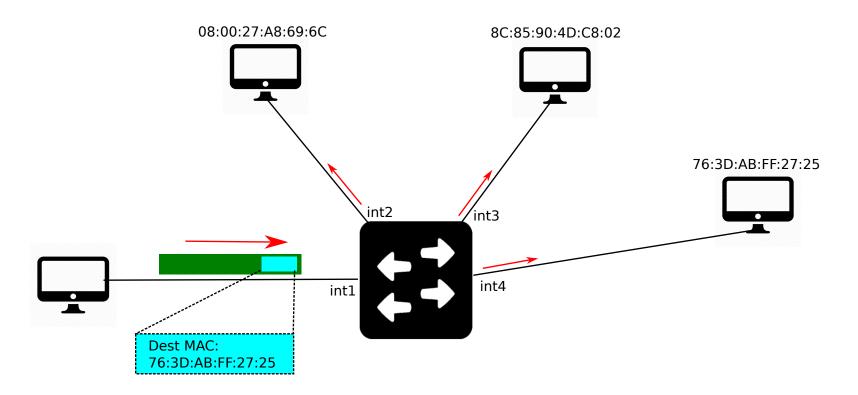
- The MAC address of a device connected to the switch, to
- An Ethernet interface of that switch


- Upon receiving a frame, the switch
 - Extracts the destination MAC address in the frame header
 - Searches the forwarding table for a match
- Match found?
 - Switch *forwards* the frame through that interface
- Match not found?
 - **オ** Switch *floods* the frame
 - Transmitting the frame from every Ethernet interface except for the one the frame was received from

Example: Switch Flooding

Consider this forwarding table for a switch:

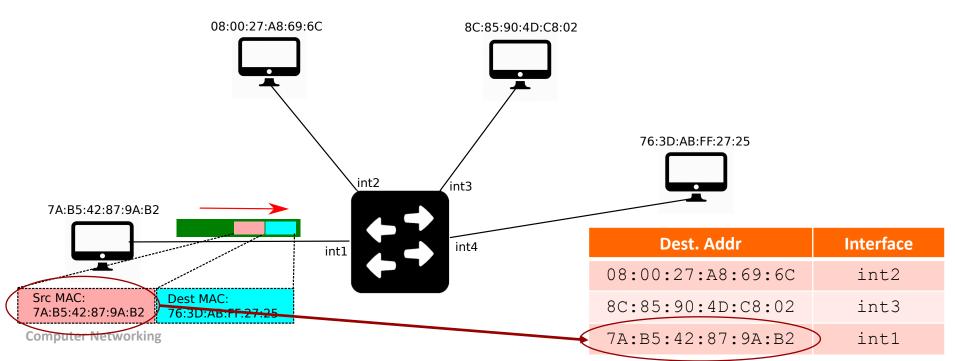
Dest. Addr	Interface
08:00:27:A8:69:6C	int2
8C:85:90:4D:C8:02	int3


How does the switch forward the frame in this LAN?

20

Example: Switch Flooding

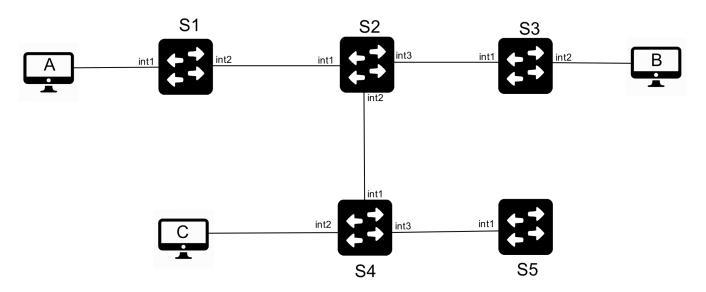
Answer: It Floods!



- A switch forwarding table on boot up is empty
- Switches <u>do not need</u> manual configuration of their forwarding tables
- **Question:** How is a switch forwarding table populated?
- Answer: A switch gradually learns about the topology of the network and populates the table
 - The switch maintains a per-interface list of all source MAC addresses received
 - Assumption: If a frame destined to that MAC address appears, it must be *reachable* through that interface

Example: Populating Switch Forwarding Table

		Dest. Addr	Interface
7	Consider the following forwarding table for a switch	08:00:27:A8:69:6C	int2
	IOI WAI UIIIg LADIE IOI A SWILCH	8C:85:90:4D:C8:02	int3


How does the switch forwarding table change upon receiving the packet in the following LAN?

Example: Switch Forwarding Tables

- Consider the following LAN
 - Assume that initially all forwarding tables are empty
 - A sends a frame to B
 - B responds to A

How are the forwarding tables are updated in each switch? How do switches forward these two frames?

Closing Thoughts

Next Class

Recap

- Today we discussed
 - Ethernet protocol in data link layer with different standards
 - MAC addresses and their structure
 - Hubs and switches
 - How switches do frame forwarding

CA.2 – Ethernet & Wireshark

Class Activity

WiFi (802.11)

