
ì
Computer Networking
COMP 177 | Fall 2020 | University of the Pacific | Jeff Shafer

Scapy

Recap

Past Topics
ì Overview of networking and

layered architecture

ì Wireshark packet sniffer

ì Ethernet and WiFi

ì IPv4

Today’s Topics
ì Scapy

ì Packet crafting for Python2
and Python3

Fall 2020Computer Networking

2

What is Scapy?

ì Scapy is a Python-based packet manipulation framework

ì Using Scapy you can
ì Sniff packets passively
ì Dissect the sniffed packets into different headers and

fields
ì Forge packets by editing different fields
ì Send packets to the destination

ì Scapy can be installed on all major operating systems

Fall 2020Computer Networking

3

Working with Scapy (Linux)

ì Scapy can be used in two different ways:
ì As an interactive programming tool
ì As a library in a larger program

ì After installation, you can simply run Scapy in interactive mode as
follows: $ scapy

ì In order to send/receive packets however, you should run Scapy with
root privileges: $ sudo scapy

ì In the interactive mode, you can
ì Define new packets
ì Read/write fields within packets
ì Send and receive packets
ì Read pcap files
ì Visualize the packets

Fall 2020Computer Networking

4

Working with Scapy

ì In order to make a packet of certain protocol, it suffices to call the
function that corresponds to that protocol
ì Ether(), IP(), ICMP(), TCP(), etc.

ì Calling these functions without any parameters populates the
fields with default values

ì The IP packet returned by invoking IP() has
ì 127.0.0.1 as both the source and destination addresses
ì 1 as the identifier
ì 0 as the fragmentation offset

ì The Ethernet frame returned by invoking Ether() has
ì 00:00:00:00:00:00 as the source MAC address
ì ff:ff:ff:ff:ff:ff as the destination MAC address

Fall 2020Computer Networking

5

Setting Protocol Fields

ì You can set protocol fields in two different ways:
ì As parameters upon invoking the protocol function

ì IP(src='192.168.1.1')
ì Ether(dst='43:63:a4:7f:18:01')
ì IP(src='192.168.1.1', ihl=5)

ì Naming the packet, and then updating the fields under that name
ì a = Ether()

a.dst = '43:63:a4:7f:18:01'
ì b=IP()

b.src = '192.168.1.1'
b.ihl = 5

ì You can also update an already set field to Scapy’s default with the del()
function
ì a = IP(src=‘192.168.1.1’)

del(a.src)
A’s src field will be restored to the default address 127.0.0.1

Fall 2020Computer Networking

6

Packet Encapsulation

ì In order to encapsulate a packet within another packet the / operator is
used – Scapy calls it the “layer” operator
ì Ether()/IP() returns an Ethernet frame that encapsulates an IP

datagram. The fields in Ethernet and IP headers would be Scapy’s default
ì Ether(dst='43:63:a4:7f:18:01')/IP(ihl=5) returns

ì Ethernet frame with destination MAC address 43:63:a4:7f:18:01
ì IP payload where the IP header length is 5

ì Encapsulation also changes the fields values appropriately that reflect on
encapsulation
ì In both Ether()/IP() and

Ether(dst='43:63:a4:7f:18:01')/IP(ihl=5)
ì Ethernet type would be updated to 0x0800 which shows that the payload

is an IP datagram
ì IP datagram proto fields still has the default value, since IP datagram does

not have any payload.

Fall 2020Computer Networking

7

Packet Encapsulation

ì Upon encapsulating a packet within another, you
can still refer to fields with .<field-name>
ì (Ether()/IP()).ttl will return the TTL value

from IP header
ì (Ether()/IP()).type will return the type

value from Ethernet header

Fall 2020Computer Networking

8

Packet Encapsulation

ì Question: What if two fields have the same name in
two different protocol? For example:
ì Both source MAC address and source IP address are

named src
ì Both destination MAC address and destination IP

address are named dst

ì Answer: Referring by field name returns the value
from the outer header
ì (Ether()/IP()).src returns the source MAC

address 00:00:00:00:00:00

Fall 2020Computer Networking

9

Packet Encapsulation

ì Question: Then how can we refer inner header
fields?

ì Answer: By explicitly mentioning the protocol
within brackets
ì (Ether()/IP())[IP].src returns IP address

127.0.0.1

Fall 2020Computer Networking

10

Useful Functions

ì raw(pkt) returns the raw byte string of pkt. This raw byte string can be fed to
each protocol function to populate fields

ì hexdump(pkt) returns a hexadecimal dump of the packet. The output is similar
to Wireshark’s packet bytes section

ì ls(pkt) lists all fields and their values within all headers of pkt. It also shows
the data type that Scapy has defined for each field

ì pkt.summary() shows a summary of the packet in one line

ì pkt.show() lists all fields and their values within all headers of pkt

ì pkt.show2() is similar to pkt.show() but displays the final packet (e.g.
checksum fields are calculated)

ì pkt.command() returns Scapy command as a string by which pkt can be
generated

Fall 2020Computer Networking

11

https://scapy.readthedocs.io/en/latest/usage.html

https://scapy.readthedocs.io/en/latest/usage.html

Generating List of Packets

ì Giving multiple values to a field generates a list of packet, each with one value
from that field

ì Assigning list(s) of values
ì IP(id=[3,10]) generates a list consisting of two IP packets, one with id=3 and

the other with id=10
ì IP(id=[3,10], ttl=[78,45]) generates a list of four IP packets with all

options for id and ttl fields

ì Assigning a range of values
ì IP(id=(3,8)) generates six IP datagrams with different ids ranging from 3 to 8

ì Assigning IP addresses with prefix lengths
ì IP(dst = '192.168.12.0/30') generates four IP packets with the

destination IP addresses: 192.168.12.0, 192.168.12.1, 192.168.12.2, 192.168.12.3

Fall 2020Computer Networking

12

Sending Packets

ì send(pkt) sends network layer packet(s)
ì send(IP(dst='192.168.1.1/30'))
ì Scapy choses an appropriate interface and link layer protocol

ì sendp(pkt) sends data link layer packet(s)
ì sendp(Ether(dst='11:22:33:44:55:66')/IP(dst="4.2.2.3"))
ì You can be explicit about the interface using iface, e.g.,

sendp(Ether(dst='11:22:33:44:55:66')/IP(dst="4.2.2.3"),
iface='eth0')

ì You can use loop=1 to send packets indefinitely
ì send(IP(dst='192.168.1.1'), loop=1)

ì You can use inter to set an interval in seconds between sending each packet
ì send(IP(dst='192.168.1.1'), loop=1, inter=0.5)

Fall 2020Computer Networking

13

Sending and Receiving Packets

ì sr1(pkt) sends network layer packet(s) and returns the first
received packet in response
ì sr1(IP(dst='192.168.1.1'))

ì srp(pkt) sends data link layer packet(s) and returns the first
received packet in response
ì srp(Ether()/IP(dst='192.168.1.1/28'))

ì sr(pkt) sends network layer packet(s) and returns two lists
ì List 1: Pairs of sent and answered packets
ì List 2: Packets that are sent but are unanswered
ì x,y=sr(IP(dst='192.168.1.1')), where x consists of pairs of

sent and answered packets, and y is the list of unanswered packets

Fall 2020Computer Networking

14

Sending and Receiving Packets

ì Use timeout to set the seconds before timing out to receive
responses
ì sr1(IP(dst='192.168.1.1'), timeout=3)

ì Use retry=n to retry sending the unanswered packets n times
ì sr1(IP(dst='192.168.1.1'), retry=5)

ì Use retry=-n to retry to send the unanswered packets for n
times in row with no answer for any of those packets
ì sr1(IP(dst='192.168.1.1'), retry=-5)

Fall 2020Computer Networking

15

Closing Thoughts

Recap
ì Today we discussed scapy

ì How to build packets of
different protocols

ì How to set values to fields
ì Some useful functions to

apply to packets
ì How to generate lists of

packets
ì How to send and receive

packets

Next Class
ì Address Resolution Protocol

(ARP)

Fall 2020Computer Networking

16

Class Activity
CA.6 – Scapy

Due tonight at 11:59pm

COMING NEXT WEEK!!

Project 1
Due Sept 30th at 11:59pm

