Address Resolution Protocol (ARP)
Recap

Past Topics

- Overview of networking and layered architecture
- Wireshark packet sniffer
- Ethernet and WiFi
- IPv4
- Scapy

Today’s Topics

- Address Resolution Protocol (ARP)
Address Resolution Protocol

- Find link layer address given a network layer address
 - What is the **Ethernet address** for a given **IP address**?

- Every IP node (hosts and routers) has an ARP table
 - Mapping from IP to Ethernet addresses on their LAN
 - May be incomplete
 - Can include both static and dynamic entries
Dynamic ARP Entries

- Systems “discover” IP → Ethernet address mappings, as needed
- Each entry has an IP address, an Ethernet address, and a timeout (typically around 1 minute)
- ARP messages are broadcast on the LAN to discover mappings
 - All computers on the network receive the ARP requests
Learning MAC addresses

- Hosts learn IP → Ethernet address mappings
 - ARP responses are stored in ARP tables
 - ARP requests are stored in ARP tables (whether the host is the target or not!)

- ARP entries time out
 - Allow machines to change IP and/or MAC addresses transparently
 - Eliminate stale entries (machines turn off, move, crash, etc.)
Router receives an IP packet
- Reads destination IP address
- Uses *longest prefix match* to determine next hop and egress interface
Before forwarding IP packet, router needs to construct a new link layer frame

- Source MAC = Address of egress interface (local to router)
- Destination MAC = ????
ARP Scenario

➤ Destination MAC address?
➤ If *next hop* is another router, it’s the MAC address of that router
➤ Current router would have IP address of next hop router
➤ If *next hop* is the destination, then it’s the MAC address of the receiver
➤ Current router has IP address of the destination
ARP Scenario

Address Resolution Protocol (ARP) is used to translate between the known IP address and the unknown MAC address.

Translate from network layer → link layer
ARP Scenario

Router constructs a *broadcast* frame containing ARP request for the destination IP address in question
Router constructs a *broadcast* frame containing ARP request for the destination IP address in question

Every node in LAN receives the ARP request
The node with the matching IP address generates an ARP reply (with information on its matching MAC address)

Sent directly back to router (not broadcast)
The node with the matching IP address generates an ARP reply (with information on its matching MAC address)

Sent directly back to router (not broadcast)
Now the router can finally complete the link layer frame for the packet waiting to be forwarded.
ARP Cache

- Each host maintains an ARP cache
 - An ARP cache is a table that maps IP addresses to MAC addresses

- ARP cache entries expire and need to be updated
 - Expiration time ranges from seconds to a few minutes
 - Upon receiving an ARP reply, the ARP cache is updated

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.1.1</td>
<td>5a:77:28:e3:ff:26</td>
</tr>
<tr>
<td>10.0.1.2</td>
<td>62:a0:4b:19:34:6d</td>
</tr>
<tr>
<td>10.0.1.3</td>
<td>96:03:37:be:73:cc</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
ARP Cache

- The *ARP Requests* provide a useful benefit to other hosts on the network (beyond the specific query).
- Every node within a LAN that receives the broadcast ARP request:
 - Checks its ARP cache to see if there is a match between the source of the ARP request and an entry in the cache.
 - If so, updates the cache with the potentially new MAC address.
 - Helps to avoid *stale cache entries*.
<table>
<thead>
<tr>
<th>Field</th>
<th>Length/Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Type</td>
<td>2 bytes</td>
</tr>
<tr>
<td>Protocol Type</td>
<td>2 bytes</td>
</tr>
<tr>
<td>Hardware Addr Len</td>
<td>1 byte</td>
</tr>
<tr>
<td>Prot Addr Len</td>
<td>1 byte</td>
</tr>
<tr>
<td>Opcode</td>
<td>2 bytes</td>
</tr>
</tbody>
</table>

- **Hardware Type** (2 bytes): Link layer used (e.g. Ethernet, \(0x0001\))
- **Protocol Type** (2 bytes): Network layer used (e.g. IP, \(0x0800\))
- **Hardware Addr Len** (1 byte): Size of link layer address in bytes
- **Protocol Addr Len** (1 byte): Size of network layer address in bytes
- **Opcode** (2 bytes): Type of ARP message (1=Request, 2=Reply)
Ethernet Frame Format

<table>
<thead>
<tr>
<th>Hardware Type</th>
<th>Protocol Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Addr Len</td>
<td>Prot Addr Len</td>
</tr>
<tr>
<td>Opcode</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sender Hardware Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sender Protocol Address (cont)</td>
</tr>
<tr>
<td>Target Hardware Address</td>
</tr>
</tbody>
</table>

Sender Hardware Address: Sender Link Layer address

Sender Protocol Address: Sender Network Layer address

Target Hardware Address: Target Link Layer address

Target Protocol Address: Target Network Layer address
ARP "Security"

- ARP does not provide *authentication* for the two ends of communication
 - A malicious node can impersonate another one

- ARP does not provide *integrity* of data within the packet
 - A malicious entity can set the fields arbitrarily

- These deficiencies allow *ARP spoofing attacks*
Assume nodes A, B, and C are within a LAN

A wants to discover the MAC address of B in order to send an IP packet

A broadcasts an ARP request

What is the MAC address for B-IP?
ARP Spoofing Example

- Assume nodes A, B, and C are within a LAN
- A wants to discover the MAC address of B in order to send an IP packet
 - A broadcasts an ARP request
ARP Spoofing Example

- B seems to be offline for some reason (or doesn’t respond quickly)
- C responds with unicast ARP reply asserting that B’s IP address matches its own MAC address
ARP Spoofing Example

- B seems to be offline for some reason (or doesn’t respond quickly)

- C responds with unicast ARP reply asserting that B’s IP address matches its own MAC address
ARP Spoofing Example

There is no way that A can verify this assertion

- A accepts the ARP reply and adds to the ARP cache a mapping from B’s IP address to C’s MAC address
- Then, the IP packet is encapsulated in a link layer frame with the destination MAC address set to C’s and sent
- C receives the packet that was supposed to be received by B
Closing Thoughts

Recap

- Today we discussed ARP
- How ARP works
- ARP packet format
- ARP spoofing

Next Class

- Virtual LANs (VLANs)

Class Activity

CA.7 – ARP & Wireshark

Due tonight at 11:59pm

Homework 2

Due Oct 2nd at 11:59pm

Project 1

Due Sept 30th at 11:59pm