

Computer Networking

COMP 177 | Fall 2020 | University of the Pacific | Jeff Shafer

Internet Protocol v6 (IPv6)

Recap

2

Past Topics

- Overview of networking and layered architecture
- Wireshark packet sniffer and
 Scapy packet manipulation
- Wired LAN, Wireless LANs, VLANs
- IPv4, ARP, ICMP

Today's Topics

- Internet Protocol,Version 6
 - ➔ Why IPv6?

 - **Addresses**
 - **7** Extensions
 - **7** Tunneling

IP Versions

Version	Description	
0-3	Unused: Development versions of IP	
4	Current network-layer protocol	
5	Unused: Experimental stream protocol – ST	
6	New network-layer protocol (1996)	
7-9	Unused: Experimental protocols – TP/IX, PIP, TUBA	
10-15	Not allocated	

Motivation for IPv6: Scarcity! (Of IP addresses...)

Why Replace IPv4?

- **7** The problem
 - IPv4 has ~4.3 billion addresses
 - World has ~6.6 billion people!
 - How many internet-capable devices per person?
- IP address exhaustion
 - Internet will not "collapse", but new devices / networks will not be able to join^(*)
- When? <u>YEARS AGO!</u> Final rate of consumption was one /8 block (16.78 million addresses) per month
 - Feb 1st, 2011 Five final /8 blocks handed out to Regional Internet Registries (RIRs)
 - **RIR** supply ran out within months

(*) Except via address translation...

5

IPv4 Address Space

- Unavailable Addresses
 - 10.x Private Addresses
 - Along with 192.168.x and 172.16.x to 172.31.x
 - 127.x Local Loopback Addresses
 - → Why an entire /8?
 - 224.x to 239.x Multicast groups
 - 240.x to 254.x Reserved for "future use"
 - Waste of address space
 - Impossible to re-use today because most IP software flags these addresses as invalid
- Current Allocation
 - http://www.iana.org/assignments/ipv4-address-space

Comparison – IPv4 vs IPv6

	IPv4	IPv6
Deployed	1981 [<i>RFC 791</i>]	1999 [RFC 2460 , 8200]
Address Size	32-bit number	128-bit number
Address Format	Dotted Decimal Notation: 192.149.252.76	Hexadecimal Notation: 3FFE:F200:0234:AB00: 0123:4567:8901:ABCD
Prefix Notation	192.149.0.0/24	3FFE:F200:0234::/48
Number of Addresses	2 ³² = ~4,294,967,296 (~4 billion)	2 ¹²⁸ = ~340,282,366, 920,938,463,463,374, 607,431,768,211,456

https://biotech.law.lsu.edu/blog/ipv4_ipv6.pdf (ARIN Fact Sheet)

Computer Networking

IPv6 Address Notation

- ↗ 128 bits 8 groups of 4 hex digits
 - 2001:0db8:85a3:08d3:1319:8a2e:0370: 7334
- "User friendly!" "Easy to remember!"
- "Helpful" Shortcuts:
 - Omit leading zeros in a group (0005:0db8:... is equivalent to 5:db8:...)
 - Collapse groups of all-zeros with :: (2001:0000:0000:0000:0000:8a2e:0370: 7334 is equivalent to 2001::8a2e:0370:7334)

YOU HAD ONE JOB

IPv4 vs IPv6 - Differences

IPv6 is *not* just IPv4 with 128-bit long addresses...

It's a different network protocol that should be configured (and secured) separately but runs over the same data link layer. *"Dual Stack"*

IPv₄ vs IPv₆ - Similarities

- Datagram
 - Each packet is individually routed
 - Packets may be fragmented or duplicated
- Connectionless
 - No guarantee of delivery in sequence
- Unreliable
 - No guarantee of delivery
 - No guarantee of integrity of data
- Best effort
 - Only drop packets when necessary
 - **7** No time guarantee for delivery

IPv4 vs IPv6 – Address Length

Address Length

- IPv4 − 32 bits (2³² = ~4 billion)
- **7** IPv6 128 bits (2^{128} = ~340 trillion, trillion, trillion)
- ✓ Standard subnet size in IPv6: 2⁶⁴
 - Upper 64 bits: Subnet address (prefix)
 - Lower 64 bits: Devices within subnet (remainder)
- With such a large address space, no need to use all possible addresses

IPv6 – Special Addresses

- Loopback Address: ::1
- ➤ Link Local Addresses: fe80::/10
 - **↗** Scope limited to single network segment / link
 - Application: Network configuration, device discovery
- ✓ Site Local Addresses: fc00::/7
 - Scope limited to single organization (similar to private IPv4 addresses)
 - Purpose: Each organization can randomly pick their own address instead of everyone using same range of private IPv4 addresses

IPv6 – Addresses Types

- Unicast Addresses
 - One address represents a single host (interface)
- Multicast Addresses
 - One address represents a group of hosts (interfaces)
 - Every member of the group receives the message destined to this address
 - Address matches ff00::/8
- Anycast Address
 - One address represents a group of hosts (interfaces)
 - One member of the group receives the message destined to this address
 - No special prefix for addresses
- Broadcast addresses are not included in IPv6
 - Can be accomplished by creating a multicast group with all devices in it

IPv₄ vs IPv₆ – Fragmentation

IPv6 Fragmentation only done by transmitting host

- Supported by an optional header
 - Design assumption that fragmentation will be less common in the future
- Routers never fragment a packet
 - Drop packets that are too large
 - Send ICMP error back to host
 - **7** Simplifies router design
- Host should use Path MTU Discovery (PMTUD) to select correct (maximum) packet size

IPv4 Datagram

< 1 b	yte	✓ 1 byte →	← 1	. byte	1 byte
Version	HdrLen	Type of Service	Total Length		
Identification			Flags	Fragment Offset	
Time-To-	Live	Protocol	Header Checksum		
Source IP Address					
Destination IP Address					
Options and padding (optional)					
Payload					

IPv6 Datagram (Base Header)

1 b	yte	1 byte		1 byte	1 byte →
Version	Traffic Class		Flow Label		
Payload Length				Next Header	Hop Limit
Source IP Address (128 bits)					
Destination IP Address (128 bits)					
Payload					

IPv6 Datagram (Base Header)

- **Fixed Length** (40 bytes)
- Version (4 bits)
- → Traffic Class (8 bits)
 - Differentiated Services (DS) field
 - Explicit Congestion Notification field
 - Can be used by routers to prioritize traffic or decide what to drop during congestion

IPv6 Datagram (Base Header)

- Flow Label (20 bits)
 - Identifies stream of packets
 - Can be used by routers to avoid sending a single flow across multiple outbound paths (which could result in re-ordering at arrival). If used, hash of (SrcIP, DstIP, TrafficClass)
- Payload Length (16 bits)
 - Specifies the size of the payload packet in bytes
- Next Header (8 bits)
 - Specifies the protocol of payload packet
- Hop Limit (8 bits) Same as IPv4 TTL

IPv6 Datagram with Extensions

Can append multiple extension headers

Base Header (Next=TCP)	TCP Data	
Base Header (Next=Fragment)	Fragment Header (Next=TCP)	TCP Data

- Examples of extension headers
 - Fragmentation (done by sender, not routers)
 - Routing (allows source to specify preferred route)
 - Authentication Header (part of IPsec verifies source)
 - Encapsulating Security Payload (part of IPsec carries encrypted payload)

IPv4 vs IPv6 – Router Overhead

- Simplified packet processing for routers
- Simplified Header Format
 - Infrequently used fields are moved to optional header extensions
- ↗ No Header Checksum in IPv6
 - Easier for routers No need to update checksum after decrementing TTL
 - Reliability maintained by link-level (Ethernet) and transport-layer (TCP, UDP) error checking

IPv6 – Routing

How can having bigger IP addresses (128 bits) make routing easier?

- Larger address space allows more intelligent network organization
 - Addresses match physical network organization
 - Collapse routing table entries
- ↗ Typical IPv6 address usage
 - Use upper 64 bits for routing
 - Use lower 64 bits for interface ID (clients pick this randomly or based on MAC address)

IPv6 – Routing

- Besides the address layout, how does IPv6 make routing easier?
 - No checksum calculation
 - No fragmentation
 - Infrequently used headers are optional

How does IPv6 make routing harder?

- **7** Forwarding table entries 2-4 times larger
- Need to route both IPv4 and IPv6 for the foreseeable future

IPv6 – Security

- What are the security implications of having a huge (sparse) address space?
 - Security through obscurity(?)
 - Blind random address scanning by worms is ineffective
 - Unlike in IPv4, which can be scanned in 5 minutes (!!) over a 10GbE link: <u>https://zmap.io/</u>
 - Targeted scanning works great, however...
 - Listen to P2P networks?
 - Listen to internal routing protocols? (OSPF, etc...)
 - Use Neighbor Discovery on infected host?
 - Snoop through host configuration and log files on infected host?
 - https://www.usenix.org/system/files/login/articles/920/bellovi n.pdf

IPv6 – Security (IPsec)

- Security IPSec support required optional in IPv6
 - IPSec encrypts each IP packet independently
 - Was originally required but dropped because not all devices (e.g. embedded) could support it
- IPsec features
 - Data encryption Data cannot be read or modified
 - Host authentication
 - Anti-replay Captured packets cannot be reused by an attacker
- What are the strengths and weaknesses of putting security at the IP layer? (Doesn't SSL work fine?)
 - Security is independent of higher layers (either applications or protocols like TCP/UDP)
 - Encryption overhead is incurred per-packet (high!)

Deployment

- Why should I deploy IPv6 today?
 - My customers can reach anywhere on the Internet today
 - Google, Facebook, Twitter, etc... will always be reachable
 - Only new applications / users will suffer
- How do I deploy IPv6?
 - **7** Flip a switch across the internet?
- Legacy routers may not be upgradeable
 - Hardware implementations are fixed
 - Software implementations may be insufficiently capable (either incapable or only at low performance)

- Islands of IPv6 in the sea of IPv4
 - Dual network stacks support both IPv4 and IPv6
 - **7** Tunnel IPv6 across IPv4 networks
- Need to upgrade other systems
 - DHCP (SLAAC vs DHCPv6)
 - **D**NS
 - Starting adding IPv6 addresses to root nameservers in 2008
 - All 13 of 13 root nameservers are IPv6 accessible now

27

IPv6Tunneling(6in4)

- ↗ Not all routers are configured for IPv6
 - A group of routers understand IPv6
 - **オ** The rest only understand IPv4
- How can IPv6 traffic be routed through a network of mixed capabilities?
 - IPv6 tunneling!
- Encapsulate IPv6 datagram within an IPv4 packet.
 - Routers that do not understand IPv6 can route according to IPv4 header
 - ↗ IPv4 protocol field: 0x29 or 41 (decimal)

28

IPv6Tunneling(6in4)

- Routers C and D only understand IPv4
- Routers B and E create a 6in4 tunnel to carry IPv6 traffic over the IPv4-only path
 - B encapsulates IPv6 packet within IPv4 packet
 - C and D route IPv4
 - *E* extracts IPv6 packet and forwards it to *F*

IPv6 – Original Plan

IPv6 – Current Status

O'REILLY*

Silvia Hagen

IPv6-The New "Plan" (?)

IPv6 Adoption

IPv6 Adoption

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

Native: 29.55% 6to4/Teredo: 0.00% Total IPv6: 29.55% | Sep 17, 2020

https://www.google.com/intl/en/ipv6/statistics.html

Computer Networking

IPv6 – Failure is an Option

- → What happens if IPv6 "fails"?
 - Failure is defined as anything less than a complete migration from IPv4 to IPv6
 - Do we stop allowing new hosts to connect to the internet?
- What about using NAT?
 - Observation: Only 5-20% of assigned IPs are actually used by hosts.
 - Solution: Use lots of NAT to reclaim unused addressed
- What happens if this works, and we build "carrier-grade" NAT everywhere?
 - No more end-to-end connectivity?
 - Need coordination with ISP to deploy new services?
 - New opportunities for ISPs to filter traffic and charge for services?

http://www.potaroo.net/presentations/2008-11-17-ipv6-failure.pdf

Closing Thoughts

Recap

- Today we discussed
 - ↗ IPv6
 - IPv6 header format
 - Addresses in IPv6
 - Extensions in IPv6
 - ↗ IPv6 tunneling

Next Class

DHCP

Class Activity

CA.10 – IPv6 & Wireshark

Due tonight at 11:59pm

Homework 3

Due Oct 14th at 11:59pm