
ì
Computer Networking
COMP 177 | Fall 2020 | University of the Pacific | Jeff Shafer

Parallel
Network Programming

Upcoming Schedule

ì Project 4 – Python HTTP Server v2
ì Starts today!
ì Due: November 18th

ì Presentation - Security & Privacy
ì Proposal due: November 4th

ì Presentation due: November 23rd

ì Peer reviews due: December 2nd

Fall 2020Computer Networking

2

ì
Parallel Network Programming

Fall 2020Computer Networking

3

Concurrency

ì Why do I need concurrency in a web server?
ì Many clients making requests in parallel
ì What if several clients each attempt to download a

large file?
ì Ugly to make everyone wait on the first user to finish
ì Eventually other clients would timeout and fail

ì A multi-CPU server should use all its resources
(multiple cores) to satisfy multiple clients

Fall 2020Computer Networking

5

Goals

Maximize
ì Request throughput

(#/sec)

ì Raw data throughput (Mbps)

ì Number of concurrent
connections

Minimize
ì Response times

(ms)

ì Server CPU utilization

ì Server memory usage

Fall 2020Computer Networking

6

Socket recv()

ì We’ll use the recv() function for today’s examples

User-space

Kernel-space
(OS)

App 1 App 2 App n
. . .

TCP
(per-socket struct)

Buffer

recv()

Buffer

recv() copies data from kernel space to user-space.
If data is available, the function returns immediately with data

Fall 2020Computer Networking

7

Blocking -vs- Non-Blocking

Blocking
ì Standard mode

ì When your program calls
recv(), if no data is
available, the OS puts your
program to sleep

ì Your program is “blocked” on
recv()

Non-Blocking
ì Special mode for many socket

calls, including recv()

ì When your program calls
recv(), if no data is
available, recv()
immediately returns

recv() copies data from kernel space to user-space.
If data is available, the function returns immediately with data

Fall 2020Computer Networking

8

Synchronous -vs- Asynchronous

Synchronous
ì “With Synchronization”

ì One operation at a time…

ì Function calls to OS services
do not return until action is
complete

Asynchronous
ì “Without Synchronization”

ì Function calls to OS services
return immediately, while OS
action can proceed
independently of user
program

Fall 2020Computer Networking

9

Combine Methods

Synchronous
Blocking I/O

Synchronous
Non-Blocking I/O

Asynchronous
Blocking I/O

Asynchronous
Non-Blocking I/O

Fall 2020Computer Networking

10

Synchronous Blocking I/O

ì Program requests data from
OS

ì recv() only returns once
data is available

ì Works fine for managing one
socket
ì How about two sockets

with different clients?

Pseudo-code:

data = socket1.recv()
Data now available

Fall 2020Computer Networking

11

Synchronous Non-Blocking I/O

ì Program requests data from
OS

ì recv() will return
immediately, but may not
have any data

ì Busy-wait loop wastes CPU
time

Pseudo-code:

socket1.blocking(off)
data = socket1.recv()
while(!data)

data = socket1.recv()

Data now available

¡ How would this work if we had two sockets
to manage?

Fall 2020Computer Networking

12

Asynchronous Blocking I/O

ì recv() still blocking

ì Busy-wait loop replaced with
new select() function
that tests multiple sockets at
once

ì Give select() separate
list of sockets
ì Want to recv()
ì Want to send()
ì Check for error

Pseudo-code:

list_recv = (socket1)
list = select(list_recv)
ready_sock = list[0]
data = ready_sock.recv()
Data now available

¡ select() returns
the subset of lists that
are ready
(for send/recv/err)

¡ Not the most efficient
function…

Fall 2020Computer Networking

13

Asynchronous Non-Blocking I/O

ì recv() returns
immediately

ì In background, OS performs
recv() work

ì When ready, OS calls a
“callback” function in your
program

Pseudo-code:

data = socket.q_recv(done)
Do something else
in program

fun done()
When called, data
is available

Fall 2020Computer Networking

14

Processes -vs- Threads

Process Thread

What’s the difference?
Fall 2020Computer Networking

15

Processes -vs- Threads

Processes
ì Use multi cores/CPUs

ì Separate memory space

ì Can communicate with other
processes only by IPC (inter-
process comm.)

ì “Safer” to program (other
processes can’t hurt you)

ì “Heavy-weight” - Slower to start
a new process (lots of OS work)

Threads
ì Use multi cores/CPUs

ì Same memory space

ì Can communicate with other
threads by shared memory

ì “Harder” to program (other
buggy threads can easily corrupt
your memory + synchronization
is hard!)

ì “Light-weight” - Fast to start a
new thread (minimal OS work)

Fall 2020Computer Networking

16

Processes -vs- Threads

Processes
ì Slow start?

ì Typical servers start a “pool” of
processes when launched

ì Requests are quickly assigned to
an already-running process
when received

ì Shared data?
ì Need to use OS IPC mechanisms

to communicate
ì Needed to assign requests to

processes, store log data from
processes to single file, …

Threads
ì Fast start?

ì OK to start threads “on
demand”

ì Shared data?
ì Need synchronization (locks,

semaphores, etc…) to prevent
corruption of shared data

Fall 2020Computer Networking

17

How to Support Concurrency?

Synchronous
Blocking I/O

Synchronous
Non-Blocking I/O

Asynchronous
Blocking I/O

Asynchronous
Non-Blocking I/O

Processes or Threads
with blocking sockets Non-blocking sockets

Single process,
Event driven Fall 2020Computer Networking

18

Single process
with select()

And now, a note
about Python…

Fall 2020Computer Networking

19

My Skill Level in Python

Novice

Intermediate

Pro

(Only if Google helps…)

Fall 2020Computer Networking

20

So before assigning class
projects, I wrote a Python
web server using threads.

Once working, I measured
its performance…

Fall 2020Computer Networking

21

Results were “sub optimal”

Not this bad, but it certainly did not scale
well as the number of concurrent clients

increased…
Fall 2020Computer Networking

22

Threads in Python

ì Python is an interpreted language
ì Several different interpreters exist…
ì Most common interpreter is written in C

(“CPython”)

ì CPython has a global lock
(GIL = Global Interpreter Lock)
ì Lock prevents two threads from running in the

interpreter and manipulating memory at same time
ì Allows interpreter to run safely (correctly), perform

garbage collection, etc…

Fall 2020Computer Networking

23

Threads in Python

ì Effect of GIL (lock) on concurrency
ì I can have multiple threads working on OS-related

tasks (send, recv, …) in parallel
ì But the GIL blocks multiple threads from running

Python native code concurrently L
ì See:

http://www.dabeaz.com/python/UnderstandingGIL.pdf

ì So, while the Python language has nice threads, the
CPython implementation limits the performance
benefit

Fall 2020Computer Networking

24

http://www.dabeaz.com/python/UnderstandingGIL.pdf

Threads in Python

ì Perfectly OK to use threads for
class projects
ì Educational
ì Good practice for other

languages!
ì Server code will look elegant

ì Just don’t expect a massive
performance boost from
parallelism

Fall 2020Computer Networking

25

