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Upcoming Schedule

ì Project 4 – Python HTTP Server v2
ì Starts today!
ì Due: November 18th

ì Presentation - Security & Privacy
ì Proposal due: November 4th

ì Presentation due: November 23rd

ì Peer reviews due: December 2nd
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ì
Parallel Network Programming
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Concurrency

ì Why do I need concurrency in a web server?
ì Many clients making requests in parallel
ì What if several clients each attempt to download a 

large file?
ì Ugly to make everyone wait on the first user to finish
ì Eventually other clients would timeout and fail

ì A multi-CPU server should use all its resources 
(multiple cores) to satisfy multiple clients
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Goals

Maximize
ì Request throughput

(#/sec)

ì Raw data throughput (Mbps)

ì Number of concurrent 
connections

Minimize
ì Response times

(ms)

ì Server CPU utilization

ì Server memory usage
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Socket recv()

ì We’ll use the recv() function for today’s examples

User-space

Kernel-space
(OS)

App 1 App 2 App n
. . .

TCP
(per-socket struct)

Buffer

recv()

Buffer

recv() copies data from kernel space to user-space.
If data is available, the function returns immediately with data
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Blocking -vs- Non-Blocking

Blocking
ì Standard mode

ì When your program calls 
recv(), if no data is 
available, the OS puts your 
program to sleep 

ì Your program is “blocked” on 
recv()

Non-Blocking
ì Special mode for many socket 

calls, including recv()

ì When your program calls 
recv(), if no data is 
available, recv()
immediately returns

recv() copies data from kernel space to user-space.
If data is available, the function returns immediately with data
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Synchronous -vs- Asynchronous

Synchronous
ì “With Synchronization”

ì One operation at a time…

ì Function calls to OS services 
do not return until action is 
complete

Asynchronous
ì “Without Synchronization”

ì Function calls to OS services 
return immediately, while OS 
action can proceed 
independently of user 
program
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Combine Methods

Synchronous 
Blocking I/O

Synchronous 
Non-Blocking I/O

Asynchronous 
Blocking I/O

Asynchronous 
Non-Blocking I/O
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Synchronous Blocking I/O

ì Program requests data from 
OS

ì recv() only returns once 
data is available

ì Works fine for managing one 
socket
ì How about two sockets 

with different clients?

Pseudo-code:

data = socket1.recv()
# Data now available
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Synchronous Non-Blocking I/O

ì Program requests data from 
OS

ì recv() will return 
immediately, but may not 
have any data

ì Busy-wait loop wastes CPU 
time

Pseudo-code:

socket1.blocking(off)
data = socket1.recv()
while(!data)

data = socket1.recv()

# Data now available

¡ How would this work if we had two sockets 
to manage?
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Asynchronous Blocking I/O

ì recv() still blocking

ì Busy-wait loop replaced with 
new select() function
that tests multiple sockets at 
once

ì Give select() separate 
list of sockets
ì Want to recv()
ì Want to send()
ì Check for error

Pseudo-code:

list_recv = (socket1)
list = select(list_recv)
ready_sock = list[0]
data = ready_sock.recv()
# Data now available

¡ select() returns 
the subset of lists that 
are ready
(for send/recv/err)

¡ Not the most efficient 
function…
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Asynchronous Non-Blocking I/O

ì recv() returns 
immediately

ì In background, OS performs 
recv() work

ì When ready, OS calls a 
“callback” function in your 
program

Pseudo-code:

data = socket.q_recv(done)
# Do something else
# in program

fun done()
# When called, data
# is available
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Processes -vs- Threads

Process Thread

What’s the difference?
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Processes -vs- Threads

Processes
ì Use multi cores/CPUs

ì Separate memory space

ì Can communicate with other 
processes only by IPC (inter-
process comm.)

ì “Safer” to program (other 
processes can’t hurt you)

ì “Heavy-weight” - Slower to start 
a new process  (lots of OS work)

Threads
ì Use multi cores/CPUs

ì Same memory space

ì Can communicate with other 
threads by shared memory

ì “Harder” to program (other 
buggy threads can easily corrupt 
your memory + synchronization 
is hard!)

ì “Light-weight” - Fast to start a 
new thread (minimal OS work)
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Processes -vs- Threads

Processes
ì Slow start?

ì Typical servers start a “pool” of 
processes when launched

ì Requests are quickly assigned to 
an already-running process 
when received

ì Shared data?
ì Need to use OS IPC mechanisms 

to communicate
ì Needed to assign requests to 

processes, store log data from 
processes to single file, …

Threads
ì Fast start?

ì OK to start threads “on 
demand”

ì Shared data?
ì Need synchronization (locks, 

semaphores, etc…) to prevent 
corruption of shared data
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How to Support Concurrency?

Synchronous 
Blocking I/O

Synchronous 
Non-Blocking I/O

Asynchronous 
Blocking I/O

Asynchronous 
Non-Blocking I/O

Processes or  Threads
with blocking sockets Non-blocking sockets

Single process, 
Event driven Fall 2020Computer Networking

18

Single process
with select()



And now, a note 
about Python…
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My Skill Level in Python

Novice

Intermediate

Pro

(Only if Google helps…)
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So before assigning class 
projects, I wrote a Python 
web server using threads.

Once working, I measured 
its performance…
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Results were “sub optimal”

Not this bad, but it certainly did not scale 
well as the number of concurrent clients 

increased…
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Threads in Python

ì Python is an interpreted language
ì Several different interpreters exist…
ì Most common interpreter is written in C 

(“CPython”)

ì CPython has a global lock 
(GIL = Global Interpreter Lock) 
ì Lock prevents two threads from running in the 

interpreter and manipulating memory at same time
ì Allows interpreter to run safely (correctly), perform 

garbage collection, etc…
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Threads in Python

ì Effect of GIL (lock) on concurrency
ì I can have multiple threads working on OS-related 

tasks (send, recv, …) in parallel
ì But the GIL blocks multiple threads from running 

Python native code concurrently  L
ì See: 

http://www.dabeaz.com/python/UnderstandingGIL.pdf

ì So, while the Python language has nice threads, the 
CPython implementation limits the performance 
benefit
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Threads in Python

ì Perfectly OK to use threads for 
class projects
ì Educational
ì Good practice for other 

languages!
ì Server code will look elegant

ì Just don’t expect a massive 
performance boost from 
parallelism
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