Computer Networking

COMP 177 | Fall 2020 | University of the Pacific | Jeff Shafer

TCP

Transmission
Control Protocol

Transmission Control Protocol (TCP)

0 8 16 24 32

Source Port

Destination Port

Sequence Number

Acknowledgment Number

Data C|E|U|A|[P|R|S|F Window Si
Reserved|(W|C|R|C| S|S|Y]I Inaow oSize
Offset RIE|G|K|H|[T|N|N
Checksum Urgent Pointer
Options Padding

Connection oriented Reliable data transport

Byte streaming Congestion control

Full duplex Flow control

Connection Establishment

TCP is a connection-oriented service

72 A connection between the two endpoints must be established before
application layer communication

TCP connections are established using an exchange called 3-way handshake.

Suppose A wants to establish a TCP connection to B. 3-way handshake:
72 Asends a TCP packet to B asking to establish a connection from itself to B

? Bresponds back to A, acknowledging the establishment of connection from
A to B, and requesting a connection from B to A

2 Aresponds back to B, acknowledging the establishment of connection from
Bto A

Result: full-duplex connection between A and B

3-Way Handshake

Suppose A wants to establish a TCP A B
connection to B. 3-way handshake SYN

takes place: -
? Asends B aTCP packet in which SYN SYN+ACK

flag is set. (SYN packet)
B responds with a TCP packet in which ﬂ»

SYN and ACK flags are set. (SYN-ACK

packet)

The Ack# field in this packet is Seq#
of SYN packet + 1. TCP three-way handshake

? A sends back a TCP packet in which
ACK flag is set. (ACK packet)

The Ack# field in this packet is the
Seqg# of SYN-ACK packet + 1.

3-Way Handshake

3-way handshake is triggered by an application-layer process request
to connect to another process

Application-layer messages (between processes) cannot be
communicated until 3-way handshake is completed

This means that the sender process needs to at least wait for one
round-trip time (RTT) before app data communication

3-Way Handshake

A waits more than 1 RTT Awaits 1 RTT to
to send app data send app data

SYN Flooding

Upon receiving a SYN packet, the server allocates some resources in the system for the
upcoming connection, and then sends the SYN-ACK packet to the client

7

The resources include different buffers, state variables, etc.

This opens the door for a classic denial of service attack, called SYN Flooding

7

7

The attacker machines (bots) flood the victim server with SYN packets
The source IP on the SYN packet is usually spoofed

The victim server allocates resources for each of the received SYN packets, and sends back a
SYN-ACK packet to the spoofed IP address

The host with the spoofed IP address discards the received SYN-ACK

Why?
Result: resource exhaustion at the server side
legitimate users j?
< syn-ack messages delayed / no response
(unanswered)

... .'
(?) %
&

malicious syn messages >
(spoofed)

7@7

\ULIIII]}

SYN Cookies

Solution: SYN cookies

72 When the server receives the SYN packet, it does not
allocate resources yet

? The server, rather than choosing a random seqg# in SYN-ACK,
computes the cryptographic hash of

Source/destination IP addresses

Source/destination port numbers

Some data that server knows (e.g., local timestamp)
? This hash is called a SYN cookie

The seq# on SYN-ACK is set to be SYN cookie.

? If the server receives ACK, then recomputes SYN cookie and
compares it with Ack# - 1. If equal, then allocates resources

Options in 3-way Handshake

Different options are negotiated within the 3-way handshake

Maximum Segment Size (MSS): Each side may announce its preferred
maximum TCP payload size (application layer data), known as MSS.

? Note that MSS does not include TCP header (only payload)

TCP

Maximum size: MSS

Selective Acknowledgement (SACK):
? By default the receiver cumulatively acknowledges the receipt of packets in
Ack# field

72 With SACK option, the receiver can inform the sender about all ranges of
bytes arrived successfully, so the sender need retransmit only the segments

that have been lost

To acknowledge selectively, a left edge and a right edge are specified in the
options field

All bytes between the two edges are received successfully

Options in 3-way Handshake

Timestamp, consisting of two parts:
2 Timestamp value: report local time of sender

72 Timestamp echo reply: report the timestamp value of the
bytes that are being acknowledged

This is used to compute RTT

Window Scale: Used to scale the reported size of window in
Window Size field

2 If Window Scale is n, then the real window size is what is
reported in Window Size field x2"

2 Represents number of bytes “in flight” across network

No Operation (NOP): used to pad out another option that was
used to 32-bit word boundary

Connection Closure

TCP is a connection-oriented service

7 An established connection between the two endpoints TCP services has to be
closed after application layer communication

Suppose A wants to close an already-established TCP connection between itself
and B

¥ A sends a TCP packet to B, requesting to close the connection from Ato B
7 B responds back to A, accepting the closure of the connection from A to B
Note that TCP connection between A and B is full duplex
At this point, one way of the connection is closed: from A to B

B can still send application layer messages to A, but A cannot send any application
message to B

At some point, B also realizes that it is time to close its connection to A. So it sends
a TCP packet to A, requesting the termination of connection

7 A responds back to B, accepting the closure of the connection from Bto A
7 Both directions of the connection are closed

Connection closure: FIN/JACK Handshakes

Suppose A wants to close an already-established TCP
connection to B

72 Asends B a TCP packet in which FIN flag is set (FIN packet)

7 B responds with a TCP packet in which ACK flag is set (ACK
packet) IN

The Ack# field in this packet is Seq# of FIN packet + 1 AC

At this point, one way of the connection is closed: from A to B nal
More DATA (optional)

B can still send application layer messages to A ﬁ

A cannot send any application message to B

FIN
72 At some point, B sends A a TCP packet in which FIN flag is set 4—//
(FIN packet) “»

? Aresponds with a TCP packet in which ACK flag is set (ACK
packet)

The Ack# field in this packet is the Seq# of previous FIN packet +
1

2 TCP connection closure consists of two FIN/ACK handshakes.

A typical TCP close

Example: ATCP session

Suppose a process on host A wants to communicate
with a process on host B

A sends messages “abc”, “defg”, and “foobar”

B sends back message “hello”.

A responds with “goodbye” and closes the connection.
B closes the connection as well

In the following example, relative sequence &
acknowledgement numbers are used (like Wireshark)

Example: ATCP session

A sends B sends
1 SYN, seq=0
2 SYN+ACK, seq=0, ack=1 (expecting)
3 ACK, seq=1, ack=1 (ACK of SYN)
4 “abc”, seq=1, ack=1
5 ACK, seq=1, ack=4
6 “defg”, seq=4, ack=1
7 seq=1, ack=8
8 “foobar”, seq=8, ack=1
9 seq=1, ack=14, “hello”
10 seq=14, ack=6, “goodbye”
11,12 | seq=21, ack=6, FIN seq=6, ack=21 ;; ACK of “goodbye”, crossing packets
13 seq=6, ack=22 ;; ACK of FIN
14 seq=6, ack=22, FIN
15 seq=22, ack=7 ;; ACK of FIN

A B
SYN

B — Example:
w/ ATCP session

k’

Crossing packets

Initial Sequence Number

TCP does not enforce any specific value for initial
sequence number (ISN)

72 ISN can be any 32-bit number

72 Selected by each endpoint and sent to other side in
initial 3-way handshake

Sequence number in the SYN and SYN-ACK packets

In the following example, ISN is 1000 for A and 7000
for B

Initial Sequence Number

In the following example, ISN is 1000 for A and 7000 for B

A, ISN=1000 B, ISN=7000
1 SYN, seq=1000
2 SYN+ACK, seq=7000, ack=1001
3 | ACK, seq=1001, ack=7001
4 | “abc”, seq=1001, ack=7001
5 ACK, seq=7001, ack=1004
6 | “defg”, seq=1004, ack=7001
7 seq=7001, ack=1008
8 | “foobar”, seq=1008, ack=7001
9 seq=7001, ack=1014, “hello”
10 | seq=1014, ack=7006, “goodbye”

Recap

Today we discussed

e

N 2N

TCP connection
establishment

TCP SYN flooding attack
TCP options

TCP connection closure

Closing Thoughts

Next Class
More TCP

Class Activity

CA.16 — TCP & Wireshark

Due tonight at 11:59pm

