Computer Networking

COMP 177 | Fall 2020 | University of the Pacific | Jeff Shafer

TCP ®)

Transmission
Control Protocol

Transmission Control Protocol (TCP)

0 8 16 24 32

Source Port

Destination Port

Sequence Number

Acknowledgment Number

Data C|E|U|A|[P|R|S|F Window Si
Reserved|(W|C|R|C| S|S|Y]I Inaow oSize
Offset RIE|G|K|H|[T|N|N
Checksum Urgent Pointer
Options Padding

Connection oriented Reliable data transport

Byte streaming Congestion control

Full duplex Flow control

State Diagrams

Provide a concise and clear way to describe a protocol

State diagrams describe a state machine consisting of

7 Finite set of states
Transition system from one state to another
? Each state transition comes with a corresponding event and/or action

State diagrams are appropriate for protocols with a lot of details

TCP State Diagram

CONNECTISYN (Step 1 of the 3-way-handshake)

................. » unusual event
———> client/receiver path (Start) _(
CLOSEI/- :
—3- Server/sender path LISTEN/- \ E/l :
: CLOSEI-
(Step 2 of the 3-way-handshake) SYN/SYN+ACK ‘
) LISTEN
l i
RST/- : : SEND/SYN
SYN ...) SYN
RECEIVED | SYN/SYN+ACK (simultaneous open) . . SENT
‘ Data exchange occurs
— <
S -€
(Step 3 of the 3-way-handshake)
| CLOSE/FIN
: CLOSE/FIN FIN/ACK
S Active CLOSE| [Passive CLOSE i
|
: Y FINJACK L Y !
i FINWAITL |77 CLOSING] CLOSE WAIT :
| FIN + ACK-of-FIN / ACK } = Lo :
I : . o i
| ACK-OLFIN/- ACKF- L CLOSE/FIN |
| : ; L .
| | | :
| : Y L Y |
: FIN WAIT 2 : TIME WAIT : : LAST ACK I
! FIN/ACK : : :
|
: Timeout : : ACK/ :
L o e e el M - - |

TCP State Diagram

An important thing to remember is that both the
client and server each have their own state
diagram and follow it independently!

They are each running a (Similar? Identical?)
implementation of TCP in the operating system

2 Each implementation is moving through its own

state diagram and making decisions about what to
do next

TCP Three-Way Handshake

TCP three-way handshake

TCP State Diagram

Initially, both the server and the client are in the CLOSED state

A Bothin the client and server, the socket is created (socket())
and address and port are bound (bind () on server)

CONNECTISYN (Step 1 of the 3-way-handshake)

................. > unusual event
—————3 client/receiver path (Start) _(................ CLOSEI
——3 server/sender path LISTEN/- \ -
: CLOSEI-
(Step 2 of the 3-way-handshake) SYN/SYN+ACK
LISTEN
| P
: Y
RST/- : : SEND/SYN
sYN .. . L T A). SYN
RECEIVED | SYN/SYN+ACK (simultaneous open) . . . SENT

Data exchange occurs

(Step 3 of the 3-way-handshake)

TCP State Diagram

SERVER: After calling 1isten(), server goes to LISTEN state

SERVER: After calling accept(), server waits to receive SYN
packet from incoming client connection

CONNECTISYN (Step 1 of the 3-way-handshake)

................. > unusual event
—————3 client/receiver path (Start) _(................ CLOSEI
——3 server/sender path LISTEN/- \ -
: CLOSEI-
(Step 2 of the 3-way-handshake) SYN/SYN+ACK
LISTEN
| P
: Y
RST/- : : SEND/SYN
sYN .. . L T A). SYN
RECEIVED | SYN/SYN+ACK (simultaneous open) . . . SENT

Data exchange occurs

(Step 3 of the 3-way-handshake)

TCP State Diagram

CLIENT: After calling connect () the client sends SYN packet and goes to SYN
SENT state

7 In this state, the client is waiting for SYN-ACK packet from the server

SERVER: While in LISTEN state, if the server receives the SYN packet, it responds
with SYN-ACK and goes to SYN RECEIVED state

72 In this state, the server is waiting for ACK packet from the client

CONNECTISYN (Step 1 of the 3-way-handshake)

................. > unusual event
—————3 client/receiver path (Start) _(................ CLOSEI
———> server/sender path LISTEN/- \ - :
: CLOSEI-
Step 2 of the 3-way-handshake) SYN/SYN+ACK
(seep g) LISTEN
| P
: Y
RST/- : : SEND/SYN
sYN .. ® "tasessessssscessssassssssssrssssserasassssaseas > SYN
RECEIVED | SYN/SYN+ACK (simultaneous open) . . . SENT
| Data exchange occurs

(Step 3 of the 3-way-handshake)

TCP State Diagram

CLIENT: While in SYN SENT state, if the client receives the SYN-ACK packet, the client
responds with ACK and goes to ESTABLISHED state. 3-way handshake is completed!

SERVER: While in SYN RECEIVED state, if the server receives the ACK packet (of SYN-ACK)
then it goes to ESTABLISHED state. 3-way handshake is completed!

In ESTABLISHED state, application layer messages can be communicated between the
client and server ©

CONNECTISYN (Step 1 of the 3-way-handshake)

................. > unusual event
—————3 client/receiver path (Start) _(................ CLOSEI
——3 server/sender path LISTEN/- \ -
: CLOSEI-
Step 2 of the 3-way-handshake) SYN/SYN+ACK
(step LISTEN
| P
: Y
RST/- : : SEND/SYN
sYN .. . L T A). SYN
RECEIVED | SYN/SYN+ACK (simultaneous open) . . . SENT

| Data exchange occurs

(Step 3 of the 3-way-handshake)

TCP State Diagram

That was the usual state transitions for client and
server

Applications can use sockets in unusual ways!

TCP State Diagram — Unusual...

SERVER: The server may close() the connection while LISTENing.
? The server goes back to CLOSED state

CLIENT: While in SYN SENT and waiting for SYN-ACK, the client may
close() the connection

? The client goes back to CLOSED state

CONNECTISYN (Step 1 of the 3-way-handshake)

................. > unusual event
—————3 client/receiver path (Start) _(................ CLOSEI
———> server/sender path LISTEN/- \ - :
: CLOSEI-
(Step 2 of the 3-way-handshake) SYN/SYN+ACK
LISTEN
| b
z : Y
RST/- : : SEND/SYN
sYN .. . LTI TT I I > SYN
RECEIVED | SYN/SYN+ACK (simultaneous open) . . . SENT
| Data exchange occurs

(Step 3 of the 3-way-handshake)

TCP State Diagram — Unusual...

SERVER: While in SYN RECEIVED state and waiting for ACK, the
server may receive RST packet from client

2 The server goes back to LISTEN state

CONNECTISYN (Step 1 of the 3-way-handshake)

................. > unusual event
—————3 client/receiver path (Start) _(................ CLOSEI
——3 server/sender path LISTEN/- \ -
: CLOSEI-
(Step 2 of the 3-way-handshake) SYN/SYN+ACK
LISTEN
: Y
RST/- : : SEND/SYN
SYN .. . 0000000000000 0000000000000000000000000000RR0EY). SYN
RECEIVED | SYN/SYN+ACK (simultaneous open) . . . SENT

Data exchange occurs

(Step 3 of the 3-way-handshake)

TCP State Diagram — Unusual...

Simultaneous Open: It’s possible for two applications to send a SYN to
each other to start a connection

72 The possibility is small, because both sides must know which port on the
other side to send to

2 While in SYN SENT, the instance receives SYN packet from the other
side. Then, it sends a SYN-ACK and goes to SYN RECEIVED state.

CONNECTISYN (Step 1 of the 3-way-handshake)

................. > unusual event
—————3 client/receiver path (Start) _(................ CLOSEI
———> server/sender path LISTEN/- \ - :
: CLOSEI-
Step 2 of the 3-way-handshake) SYN/SYN+ACK
(seep g LISTEN
| ko
: Y
RST/- : : SEND/SYN
sYN .. . LTI TT I I > SYN
RECEIVED | SYN/SYN+ACK (simultaneous open) . . . SENT
| Data exchange occurs

(Step 3 of the 3-way-handshake)

TCP Simultaneous Open

Host-A Host-B

{Close} {Close}

{ SYN-SENT} { SYN-SENT}

{ SYN-RECEIVED} { SYN-RECEIVED}
|

{ESTABLISHED}
{ESTABLISHED}

TCP State Diagram

Both sides need to close the TCP connection
2 The “active” instance sends the first FIN packet

2 The “passive” instance sends the second FIN packet

Data exchange occurs

[> [ESTABISREDN <. < " e 5
- ‘(Step 3 of the 3-way-handshake)

| CLOSEIFIN |
: CLOSE/FIN FINJACK
___________________________________ [Active CLOSE| [Passive CLOSE] T
v Y FIN/ACK Y
CLOSE WAIT

CLOSE/FIN
Y Y
FINWAIT2 | T TIME wAIT LAST ACK

I
I
I
I
|
|
I
I
|
! . .
| ACK-0f-FIN /- ACK/- |
| : R
|
|
I
I
I
}
|
I
I
I

FIN/ACK
Timeout ACK/-
__

TCP State Diagram

Passive close: While in ESTABLISHED state, the instance receives
FIN packet, acknowledges it, and goes to CLOSE WAIT

72 In CLOSE WAIT, the instance can still send data

| Data exchange occurs

- ‘(Step 3 of the 3-way-handshake)

| CLOSEIFIN |
: CLOSE/FIN FINJACK
R AR DR [Active cLoSE] [Passive cLosg][
I
: v Y FINJACK] Y :
! | FINWAITL |77 CLOSING | CLOSE WAIT :
I FIN + ACK-0f-FIN / ACK : : : :
: | .
| ACK-ol-FIN /- ACK- | b CLOSE/FIN i
| | | - .
| : \ | :
| : Y] Y .
Booooos |
: FIN WAIT 2 | > TIME wAIT b LAST ACK |
: FIN/ACK ! | :
: lTimeout] ACK- :
__ |

TCP State Diagram

Passive close: While in CLOSE WAIT, if the instance calls
close(), it sends a FIN packet and goes to LAST ACK.

72 In LAST ACK, the instance cannot send data anymore

| Data exchange occurs

- ‘(Step 3 of the 3-way-handshake)

| CLOSEIFIN |
: CLOSE/FIN FINJACK
R AR DR [Active cLoSE] [Passive cLosg][
I
: v Y FINJACK] Y :
! | FINWAITL |77 CLOSING | CLOSE WAIT :
I FIN + ACK-0f-FIN / ACK : : : :
: | .
| ACK-ol-FIN /- ACK- | b CLOSE/FIN i
| | | - .
| : \ | :
| : Y] Y .
Booooos |
: FIN WAIT 2 | > TIME wAIT b LAST ACK |
: FIN/ACK ! | :
: lTimeout] ACK- :
__ |

TCP State Diagram

Active close: While in ESTABLISHED, if the instance calls
close(), it sends a FIN packet and goes to FIN WAIT 1

72 In FIN WAIT 1, the instance is waiting to received ACK for sent FIN

| Data exchange occurs

- ‘(Step 3 of the 3-way-handshake)

| CLOSEIFIN |
: CLOSE/FIN FINJACK
R AR DR [Active cLoSE] [Passive cLosg][
I
: v Y FINJACK] Y :
! | FINWAITL |77 CLOSING | CLOSE WAIT :
I FIN + ACK-0f-FIN / ACK : : : :
: | .
| ACK-ol-FIN /- ACK- | b CLOSE/FIN i
| | | - .
| : \ | :
| : Y] Y .
Booooos |
: FIN WAIT 2 | > TIME wAIT b LAST ACK |
: FIN/ACK ! | :
: lTimeout] ACK- :
__ |

TCP State Diagram

Active close: While in FIN WAIT 1, if the instance receives the
ACK of already sent FIN, it goes to FIN WAIT 2

72 In FIN WAIT 2 state, instance can still receive data

| Data exchange occurs

- ‘(Step 3 of the 3-way-handshake)

| CLOSEIFIN |
: CLOSE/FIN FINJACK
R AR DR [Active cLoSE] [Passive cLosg][
I
: v Y FINJACK] Y :
! | FINWAITL |77 CLOSING | CLOSE WAIT :
I FIN + ACK-0f-FIN / ACK : : : :
: | .
| ACK-ol-FIN /- ACK- | b CLOSE/FIN i
| | | - .
| : \ | :
| : Y] Y .
Booooos |
: FIN WAIT 2 | > TIME wAIT b LAST ACK |
: FIN/ACK ! | :
: lTimeout] ACK- :
__ |

TCP State Diagram

Active close: While in FIN WAIT 2, if the instance receives FIN
packet, it sends the ACK, starts a timer, and goes to TIME WAIT

72 In TIME WAIT state, instance can still receive potentially delayed
data paCkeqS Data exchange occurs

- ‘(Step 3 of the 3-way-handshake)

| CLOSEIFIN |
: CLOSE/FIN FINJACK
R AR DR [Active cLoSE] [Passive cLosg][
] B
: v Y FIN/ACK | Y :
! | FINWAITL |77 CLOSING | CLOSE WAIT :
I FIN + ACK-0f-FIN / ACK : : : :
I N H
K | | |
| ACK-ol-FIN /- ACK(- b CLOSE/FIN i
| | | - .
| : \ | :
| : Y] Y .
Booooos |
: FIN WAIT 2 > TIME wAIT b LAST ACK |
: FIN/ACK ! | :
: lTimeout] ACK- :
__ |

TCP State Diagram

Active close: While in TIME WAIT, when the timer expires, it
deallocates the socket resources and goes to CLOSED

2 The timeout value is usually 1-2 minutes

| Data exchange occurs

- ‘(Step 3 of the 3-way-handshake)

| CLOSEIFIN |
: CLOSE/FIN FINJACK
R AR DR [Active cLoSE] [Passive cLosg][
I
: v Y FINJACK] Y :
! | FINWAITL |77 CLOSING | CLOSE WAIT :
I FIN + ACK-0f-FIN / ACK : : : :
: | .
| ACK-ol-FIN /- ACK- | b CLOSE/FIN i
| | | - .
| : \ | :
| : Y] Y .
Booooos |
: FIN WAIT 2 | > TIME wAIT b LAST ACK |
: FIN/ACK ! | :
: lTimeout] ACK- :
__ |

TCP State Diagram

Active close: While in FIN WAIT 1 and expecting ACK, if it
receives FIN-ACK packet, it sends the ACK of FIN and directly
goes to TIME WAIT

| Data exchange occurs

- ‘(Step 3 of the 3-way-handshake)

| CLOSEIFIN |
: CLOSE/FIN FINJACK
R AR DR [Active cLoSE] [Passive cLosg][
I
: v Y FINJACK] Y :
! | FINWAITL |77 CLOSING | CLOSE WAIT :
I FIN + ACK-0f-FIN / ACK : : : :
: | .
| ACK-ol-FIN /- ACK- | b CLOSE/FIN i
| | | - .
| : \ | :
| : Y] Y .
Booooos |
: FIN WAIT 2 | > TIME wAIT b LAST ACK |
: FIN/ACK ! | :
: lTimeout] ACK- :
__ |

TCP State Diagram

Active close: While in FIN WAIT 1 and expecting ACK, if it
receives FIN, it sends the ACK of FIN and goes to CLOSING

2 In CLOSING state, it waits to receive ACK of sent FIN
2 If so, it goes to TIME WAIT
| CLOSEIFIN |
CLOSEIFIN FINJACK
_""é _____________________________ [Active cLoSE] [Passive cLosg][
y Y FIN/ACK b Y
[ANWAITL [T cLosine | CLOSE WAIT
| ACK-0f-FIN /- ' ACK/-% CLOSEI/FIN
I Y Y
| ANwaT2 | o[TvEwar | LAST ACK

A B >

CLOSED
SYN LISTEN

State
__~___-__‘§~‘-_‘->
SYN_SENT W @ h ain g es

“
4/”'&&/

lldef ”
ESTABLISHED A
ESTABLISHED
Hhe ”
1 b e”
N A
FINWAIT_1 A

CLOSEWAIT

FINWAIT 2 //_ﬂﬂ/
\ﬂ(\> LAST _ACK

CLOSED

TIMEWAIT

State Changes in TCP Closing

A B
=STABLIEHED FIN ESTABLISHED
FIN_WAIT_1 ‘M

CLOSE_WAIT
More Data (optional)..--------"
FIN.WAIT 2 [0 e

LAST_ACK

TIMEWAIT

CLOSED

Normal close

Checking TCP States

You can use netstat -a to check the status of all TCP
connections, in your machine.

Most TCP states are ephemeral. The exceptions are

7
7

7

ESTABLISHED: Both sides sending application messages
LISTEN: The server is listening on its welcoming sockets

TIME WAIT: Waiting a few minutes before closing the
connection fully

CLOSE WAIT: The connection is half-open, after closing
one way

FIN WAIT 2: The connection is half-open, after closing one
way

Path MTU Discovery

TCP is a byte stream protocol that needs to divide the
application layer message into smaller segments

The maximum application layer data as a payload of TCP
is called maximum segment size (MSS)

MSS is determined by the maximum transmission unit
(MTU) in the path between the two ends

TCP service may need to discover the path MTU in order
to maximize MSS

? Different approach is used by TCP over IPv4 versus IPv6

Path MTU Discovery in IPvy

To discover path MTU with TCP on IPv4
72 An IPv4 packet with DF=1 is sent with a certain size x

72 If ICMP message “Fragmentation required, but DF set” is
received, or the packet times out, then a packet with
smaller size is sent with DF=1.

7 If the acknowledgement is received for the sent packet,
then a packet with size bigger than x is sent, where DF=1

Process repeats to experimentally find the MTU

? Typical sizes of 512-1500 bytes is covered by this process
by a few discrete values

Path MTU Discovery in IPv6

IPv6 does not have DF flag

When TCP uses IPv6, in order to discover path MTU:

7
7

7

TCP sends IPv6 packets with gradually increasing size

This process continues until ICMPv6 “Packet too Big” is
received.

ICMPv6 “Packet too Big” message can be sent by any
intermediary node

Note that IPv6 routers do not fragment the packets. They
drop larger than MTU packets and send back ICMPv6
message, reporting the case

If ICMPvV6 error received, an IPv6 packet with smaller size
is tried. If successful, MTU is discovered

Reliable Data Transport

Problem: How to build a reliable data transport service on top of an
unreliable service?

72 Anabstract discussion, independent of (reliable) TCP and (unreliable) IP.

Short answer: achieved by retransmission-on-timeout policy

72 If apacketis sent, and no acknowledgment is received within the timeout
interval, then the packet is resent.

7 Protocols that implement this policy are called ARQ (Automatic Repeat
reQuest).

72 Toimprove throughput in ARQs, sliding windows are used.

7 Retransmission-on-timeouts require sequence numbers for the packets, in
order to identify them.

7 Notation: Let’s denote
Data[N]: Nth data packet

Ack[N]: Acknowledgement of Nth data packet cumulatively, i.e.,
acknowledging every packet up to Nth

Stop-and-Wait

The simplest ARQ protocol is a stop-and-wait
protocol.

72 The sender only sends one outstanding packet in a
time

2 The sender starts a timer upon sending the packet

2 If that outstanding packet is acknowledged within

the timeout interval, then the sender sends the next
packet in sequence, and resets the timer

A Otherwise, if the sender does not receive the
acknowledgement before timing out, it retransmits
the outstanding packet, and resets the timer

Stop-and-Wait

Computer Networking

Data 1

Ack 1

Data 2

Ack 2

Data 3

Ack 3

Data 4

Ack 4

ATATAYS

33

Fall 2020

Stop-and-Wait

Sender Receiver Sender Receiver

Da\a[N]‘ %}

¥

TimeOUt K TimeOUt *‘
M M

Lost Data Lost ACK
Sender cannot differentiate these two scenarios
7 Is the packet is lost?
7 Is the acknowledgement of the packet lost?

If the acknowledgement is lost, the receiver would receive the same packet twice.

? The receiver implements retransmission-on-duplicate strategy, i.e., it re-acknowledges the duplicated packet.

Stop-and-Wait: Packet Duplication

Receiving a duplicate packet
may have different reasons:

Data[N]
72 Acknowledgement of that
packet was lost

72 Acknowledgement was
delayed, and so the sender
had timed out before
receiving the
acknowledgement.

Sender Receiver

ACKI[N]

Timeout

/Ex)é‘ﬁf\utf'f] ? The sender had prematurely
timed out before receiving
the on-time

acknowledgement

Late ACK

Stop-and-Wait: Packet Duplication

sender

TIMEOUT

First Data[3]

Second Data[3]

& First Data[4]",.-"".

.
.-
.

~"Second Data[d] ...

receiver

..-] First ACK]3], delayed

=1 Second ACK[3]

First ACK[4]

»| Second ACK[4]

First ACKI[5]

> Second ACKJ5]

If both sender and receiver
follow retransmission-on-
duplicate strategy, upon
receiving a delayed
acknowledgement, every
single packet would end up
being transmitted multiple
times

Significantly decreasing
throughput

Recap

Today we discussed

e

e
e
e

TCP state system
TCP path MTU discovery
Reliable data transport

Stop-and-wait protocols

Closing Thoughts

Next Class
More TCP

Project 4

Due Nov 18th

Presentation

Due Nov 23rd

