
ì
Computer Networking
COMP 177 | Fall 2020 | University of the Pacific | Jeff Shafer

TCP (3)
Transmission

Control Protocol

Transmission Control Protocol (TCP)

ì Connection oriented

ì Byte streaming

ì Full duplex

ì Reliable data transport

ì Congestion control

ì Flow control

Fall 2020Computer Networking

2

State Diagrams

ì Provide a concise and clear way to describe a protocol

ì State diagrams describe a state machine consisting of
ì Finite set of states
ì Transition system from one state to another
ì Each state transition comes with a corresponding event and/or action

ì State diagrams are appropriate for protocols with a lot of details

Fall 2020Computer Networking

3

Fall 2020Computer Networking

4
TCP State Diagram

TCP State Diagram

ì An important thing to remember is that both the
client and server each have their own state
diagram and follow it independently!

ì They are each running a (Similar? Identical?)
implementation of TCP in the operating system
ì Each implementation is moving through its own

state diagram and making decisions about what to
do next

Fall 2020Computer Networking

5

TCP Three-Way Handshake

Fall 2020Computer Networking

6

TCP State Diagram

ì Initially, both the server and the client are in the CLOSED state
ì Both in the client and server, the socket is created (socket())

and address and port are bound (bind() on server)

Fall 2020Computer Networking

7

TCP State Diagram

ì SERVER: After calling listen(), server goes to LISTEN state

ì SERVER: After calling accept(), server waits to receive SYN
packet from incoming client connection

Fall 2020Computer Networking

8

TCP State Diagram

ì CLIENT: After calling connect() the client sends SYN packet and goes to SYN
SENT state
ì In this state, the client is waiting for SYN-ACK packet from the server

ì SERVER: While in LISTEN state, if the server receives the SYN packet, it responds
with SYN-ACK and goes to SYN RECEIVED state
ì In this state, the server is waiting for ACK packet from the client

Fall 2020Computer Networking

9

TCP State Diagram

ì CLIENT: While in SYN SENT state, if the client receives the SYN-ACK packet, the client
responds with ACK and goes to ESTABLISHED state. 3-way handshake is completed!

ì SERVER: While in SYN RECEIVED state, if the server receives the ACK packet (of SYN-ACK)
then it goes to ESTABLISHED state. 3-way handshake is completed!

ì In ESTABLISHED state, application layer messages can be communicated between the
client and server J

Fall 2020Computer Networking

10

TCP State Diagram

ì That was the usual state transitions for client and
server

ì Applications can use sockets in unusual ways!

Fall 2020Computer Networking

11

TCP State Diagram – Unusual…

ì SERVER: The server may close() the connection while LISTENing.
ì The server goes back to CLOSED state

ì CLIENT: While in SYN SENT and waiting for SYN-ACK, the client may
close() the connection
ì The client goes back to CLOSED state

Fall 2020Computer Networking

12

TCP State Diagram – Unusual…

ì SERVER: While in SYN RECEIVED state and waiting for ACK, the
server may receive RST packet from client
ì The server goes back to LISTEN state

Fall 2020Computer Networking

13

TCP State Diagram – Unusual…

ì Simultaneous Open: It’s possible for two applications to send a SYN to
each other to start a connection
ì The possibility is small, because both sides must know which port on the

other side to send to
ì While in SYN SENT, the instance receives SYN packet from the other

side. Then, it sends a SYN-ACK and goes to SYN RECEIVED state.

Fall 2020Computer Networking

14

TCP Simultaneous Open

Fall 2020Computer Networking

15

TCP State Diagram

ì Both sides need to close the TCP connection
ì The “active” instance sends the first FIN packet
ì The “passive” instance sends the second FIN packet

Fall 2020Computer Networking

16

TCP State Diagram

Fall 2020Computer Networking

17

ì Passive close: While in ESTABLISHED state, the instance receives
FIN packet, acknowledges it, and goes to CLOSE WAIT
ì In CLOSE WAIT, the instance can still send data

TCP State Diagram

Fall 2020Computer Networking

18

ì Passive close: While in CLOSE WAIT, if the instance calls
close(), it sends a FIN packet and goes to LAST ACK.
ì In LAST ACK, the instance cannot send data anymore

TCP State Diagram

Fall 2020Computer Networking

19

ì Active close: While in ESTABLISHED, if the instance calls
close(), it sends a FIN packet and goes to FIN WAIT 1
ì In FIN WAIT 1, the instance is waiting to received ACK for sent FIN

TCP State Diagram

Fall 2020Computer Networking

20

ì Active close: While in FIN WAIT 1, if the instance receives the
ACK of already sent FIN, it goes to FIN WAIT 2
ì In FIN WAIT 2 state, instance can still receive data

TCP State Diagram

Fall 2020Computer Networking

21

ì Active close: While in FIN WAIT 2, if the instance receives FIN
packet, it sends the ACK, starts a timer, and goes to TIME WAIT
ì In TIME WAIT state, instance can still receive potentially delayed

data packets

TCP State Diagram

Fall 2020Computer Networking

22

ì Active close: While in TIME WAIT, when the timer expires, it
deallocates the socket resources and goes to CLOSED
ì The timeout value is usually 1-2 minutes

TCP State Diagram

Fall 2020Computer Networking

23

ì Active close: While in FIN WAIT 1 and expecting ACK, if it
receives FIN-ACK packet, it sends the ACK of FIN and directly
goes to TIME WAIT

TCP State Diagram

Fall 2020Computer Networking

24

ì Active close: While in FIN WAIT 1 and expecting ACK, if it
receives FIN, it sends the ACK of FIN and goes to CLOSING
ì In CLOSING state, it waits to receive ACK of sent FIN
ì If so, it goes to TIME WAIT

State
Changes

Fall 2020Computer Networking

25

State Changes in TCP Closing

Fall 2020Computer Networking

26

Checking TCP States

ì You can use netstat -a to check the status of all TCP
connections, in your machine.

ì Most TCP states are ephemeral. The exceptions are
ì ESTABLISHED: Both sides sending application messages
ì LISTEN: The server is listening on its welcoming sockets
ì TIME WAIT: Waiting a few minutes before closing the

connection fully
ì CLOSE WAIT: The connection is half-open, after closing

one way
ì FIN WAIT 2: The connection is half-open, after closing one

way

Fall 2020Computer Networking

27

Path MTU Discovery

ì TCP is a byte stream protocol that needs to divide the
application layer message into smaller segments

ì The maximum application layer data as a payload of TCP
is called maximum segment size (MSS)

ì MSS is determined by the maximum transmission unit
(MTU) in the path between the two ends

ì TCP service may need to discover the path MTU in order
to maximize MSS
ì Different approach is used by TCP over IPv4 versus IPv6

Fall 2020Computer Networking

28

Path MTU Discovery in IPv4

ì To discover path MTU with TCP on IPv4
ì An IPv4 packet with DF=1 is sent with a certain size x
ì If ICMP message “Fragmentation required, but DF set” is

received, or the packet times out, then a packet with
smaller size is sent with DF=1.

ì If the acknowledgement is received for the sent packet,
then a packet with size bigger than x is sent, where DF=1

ì Process repeats to experimentally find the MTU
ì Typical sizes of 512-1500 bytes is covered by this process

by a few discrete values

Fall 2020Computer Networking

29

Path MTU Discovery in IPv6

ì IPv6 does not have DF flag

ì When TCP uses IPv6, in order to discover path MTU:
ì TCP sends IPv6 packets with gradually increasing size
ì This process continues until ICMPv6 “Packet too Big” is

received.
ì ICMPv6 “Packet too Big” message can be sent by any

intermediary node
ì Note that IPv6 routers do not fragment the packets. They

drop larger than MTU packets and send back ICMPv6
message, reporting the case

ì If ICMPv6 error received, an IPv6 packet with smaller size
is tried. If successful, MTU is discovered

Fall 2020Computer Networking

30

Reliable Data Transport

ì Problem: How to build a reliable data transport service on top of an
unreliable service?
ì An abstract discussion, independent of (reliable) TCP and (unreliable) IP.

ì Short answer: achieved by retransmission-on-timeout policy
ì If a packet is sent, and no acknowledgment is received within the timeout

interval, then the packet is resent.
ì Protocols that implement this policy are called ARQ (Automatic Repeat

reQuest).
ì To improve throughput in ARQs, sliding windows are used.
ì Retransmission-on-timeouts require sequence numbers for the packets, in

order to identify them.
ì Notation: Let’s denote

ì Data[N]: Nth data packet
ì Ack[N]: Acknowledgement of Nth data packet cumulatively, i.e.,

acknowledging every packet up to Nth

Fall 2020Computer Networking

31

Stop-and-Wait

ì The simplest ARQ protocol is a stop-and-wait
protocol.
ì The sender only sends one outstanding packet in a

time
ì The sender starts a timer upon sending the packet
ì If that outstanding packet is acknowledged within

the timeout interval, then the sender sends the next
packet in sequence, and resets the timer

ì Otherwise, if the sender does not receive the
acknowledgement before timing out, it retransmits
the outstanding packet, and resets the timer

Fall 2020Computer Networking

32

Fall 2020Computer Networking

33

Stop-and-Wait

Stop-and-Wait

ì Sender cannot differentiate these two scenarios
ì Is the packet is lost?
ì Is the acknowledgement of the packet lost?

ì If the acknowledgement is lost, the receiver would receive the same packet twice.
ì The receiver implements retransmission-on-duplicate strategy, i.e., it re-acknowledges the duplicated packet.

Fall 2020Computer Networking

34

Stop-and-Wait: Packet Duplication

ì Receiving a duplicate packet
may have different reasons:
ì Acknowledgement of that

packet was lost
ì Acknowledgement was

delayed, and so the sender
had timed out before
receiving the
acknowledgement.

ì The sender had prematurely
timed out before receiving
the on-time
acknowledgement

Fall 2020Computer Networking

35

Stop-and-Wait: Packet Duplication

ì If both sender and receiver
follow retransmission-on-
duplicate strategy, upon
receiving a delayed
acknowledgement, every
single packet would end up
being transmitted multiple
times
ì Significantly decreasing

throughput

Fall 2020Computer Networking

36

Closing Thoughts

Recap
ì Today we discussed

ì TCP state system
ì TCP path MTU discovery
ì Reliable data transport
ì Stop-and-wait protocols

Next Class
ì More TCP

Fall 2020Computer Networking

37

Project 4
Due Nov 18th

Presentation
Due Nov 23rd

