Computer Networking

COMP 177 | Fall 2020 | University of the Pacific | Jeff Shafer

TCP 4

Transmission
Control Protocol

Transmission Control Protocol (TCP)

0 8 16 24 32

Source Port

Destination Port

Sequence Number

Acknowledgment Number

Data C|E|U|A|[P|R|S|F Window Si
Reserved|(W|C|R|C| S|S|Y]I Inaow oSize
Offset RIE|G|K|H|[T|N|N
Checksum Urgent Pointer
Options Padding

Connection oriented Reliable data transport

Byte streaming Congestion control

Full duplex Flow control

Data 1

Stop-and-Wait

Ack 1

Data 2

Ack 2

Data 3

Ack 3

Data 4

Ack 4

ATATAYS

Computer Networking Fall 2020

Sliding Windows

Stop-and-wait protocols are not efficient as the network is idle
most of the time

Solution: Let the sender send packets back-to-back before
waiting for their acknowledgements

?2 Constraint: we cannot let the sender get too far ahead
before receiving the acknowledgements

A The limit defines a window size, W

72 A window is a queue of packets that can be sent back-to-
back without waiting for the acknowledgements

Sliding windows

2 The sender is allowed to send window size number of
packets before waiting for the acknowledgment of the first
packet in the window

Sliding Windows

Color scheme used for presentation of sliding
windows

72 Blue: region of buffer that precedes the sliding
window

72 Green: region of buffer that refers to the sliding
window

72 Red: region of buffer within the sliding window
that has been sent/received

Sliding Windows: Sender Window

The sender keeps a state variable

last ack representing the last packet window
for which it has received an

acknowledgement IIIF!IiiII!

The sender then sends packets with
sequence numbers last _ack+1 up to
last ack+W

7 This range defines the sender window

last_ack last_ack+1 last_ack+W

window

T

last_ack last_ack+1 last_ack+W

If Ack[N] arrives and N > last_ack then
last _ack becomes N

72 Acknowledgements are cumulative

? The window “slides forward”, and the
sender may send more packets

Sender Window: Example

Assume that at the sender side,

e
e

e

Window size is 4, i.e., W =4

Last acknowledged packet is 10
(i.e., last _ack =10)

Sender window —>

If Ack[11] arrives

e

N N3N

Last ack gets updated to 11
Window slides forward by 1
Sender window -

Data[15] can be sent since it is
in the window

W|ndow

7 8 9 10 11 12 13 14 15 1617 18 19

wmdow

7

9 10 11 12 13 14 15 1617 18 19

Sender Window: Example

window
W= 4

1 2 3 45 6 7 8 9 1011 12 13 14 15 1617 18 19

If Ack[13] arrives
72 Last ack gets updated to 13 -
Window slides forward by 2 W= 4

Sender window - IIIIIIIIIIIIIII I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19

Data[16-17] can be sent
since they are in the window

N N N

%
X

o
P A\t

0000000
1111111111
aaaaa
aaaaaaaaaa
DDDDDDDDDD
//////////
1111111111

kkkkkkkkkk
CCCCCCCCCC
< < < < < < < < < M

=) = N
<) © ~ @ o — = —
— 8 8 8 8 8 8 8 8
o] < ©] ©] © © ©
T o o o o o o o o
a = = = ~ = = = =

- o~ ™ < 1) © ~ ©
x i~ x x x x x x
o o o El o o o]
< < < < < < < <
o~ ™
H M X © ©®
- 5] - Q T ¥
g : .) ° <
(=]

-
O
wn
=
(o
Q
-
O
W,
v
N
0
=
O
S
-
-
Q
9
-
)
0

=6

nSize

Wi

=4

Size

Win

=1

Size

Win

Sliding Windows: Receiver Window

Sliding sender window and timeout mechanism can detect packet loss and
initiate retransmission

However, it does not prevent out-of-order receipt of packets at the receiver
side

2 The receiver also needs a window of potentially the same size as sender’s W

72 The receiver buffers out-of-order packets whose sequence numbers are in

the receiver window.
wmdow

Example: Assume that
the receiver window is - IIIIIIIIIIIIIIII

10 11 12 13 14 15 1617 18 19

? The receiver can receive packets 11 to 16

A IfData[11] is delayed, but Data[12] through Data[16] are received,
then these out-of-order packets are buffered until Data[11] arrives

Sliding Windows: Receiver Window

Similar to sender, the receiver keeps the state variable last ack

Receiver’s last ack is not necessarily in sync with sender’s
last ack

window
At any instance, the receiver is W=6
willing to receive packets IIIIIIIII IIII
last ack+1to last ack+W 12 345 6 78 9/10 1 12 13 14 15 1617 18 19
2 This defines the receiver window st.ock leSAdT - lastackew
window

If the receiver receives packets in

W= 6
the range last ack+2to IIIIIIIII’!IIIIF

last_ack+W, the packets would 010 12 13 14 15 Jis 17 1
be bUffered last_ ack last_ack+1 last_ack+W

Sliding Windows: Receiver Window

Upon receiving packet 1ast ack+1, the receiver

e
e
e

Examines the buffered packets,
Sends the largest cumulative acknowledgement to the sender

Updates 1last_ack to the largest cumulative acknowledgement
number

This slides the receiver window forward
window
W= 6
Il!!!!!!!!!!!!!!!l7 18 19
last_ack last_ack+1 last_ack+W
window

W= 6

1l4 15 1617 18 [19

10 11 12/13

1 2 3 4 5 6 7 8 9 {

last_ack last ack+1 last_ack+W

Receiver Window: Example

Assume that at the receiver
2 Windowsize is 5, i.e., W=5
A last _ack=10

A Packets Data[12], Data[13], and

Data[15] are already received and window
buffered

W= 5
2 Receiver window-> IIIIIIIIIF!IIIF
1 2 3 4 5 6 7 8 9 8 19

10 11 12 13 14/15 1617 1

last_ack last_ack+1 |ast ack+W

If Data[11] arrives, then
72 Ack[13]is sent window

W=5
A last _ack becomes 13 IIIIIIIIIIIIFIIII
1 2 3 45 6 7 8

A Receiver window slides forward = 530 11 13/13 8 15 161718 19

last_ack last_ack+1 last ack+W

Cumulative Acknowledgements

Note that acknowledgements are cumulative.

Receiving out-of-order packets generates
Ack[last ack]

For instance, in the previous example, upon
receiving each of Data[12], Data[13], and Data[15],
the receiver sends back Ack[10]

window
W=5
123456789J10!

1 12 13 14/15 1617 18 19

last_ack last_ack+1 last ack+W

Example: Loss Recovery

Assume scenario

7 W=4 at both ends

? Sender has sent packets Data[5] through Datal[8]
A Data[5] is lost and all others have been received

Result

72 Upon the arrival of each of packets Data[6], Data[7], and Data[8], the
receiver has sent Ack[4]

? Packets Data[6], Data[7], and Data[8] are buffered at the receiver

2 Receiver window = W.ndow

4 5 6 7 8 9 1011 12 13 14 15 1617 18 19

16

Example: Loss Recovery

window
W= 4

1 2 3 45 6 7 8 9 1011 12 13 14 15 1617 18 19

When the sender times out, it
only sends Data[5]

A If it arrives at the receiver,

Ack[8] will be sent indow

72 Receiver window = IIIIIIIIII I
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 1617 18 19

Sliding Windows in TCP

TCP uses sliding windows to improve throughput

However, TCP is a byte stream protocol

7 Sequence numbers and acknowledgement numbers refers to bytes, not packets.
7 Window sizes are measured in terms of bytes, not packets

Each side announces its initial window size in the 3-way handshake using “Window
Size” field in TCP

7 Window Scale option may be used to scale the window size.

Example: Let’s revisit an earlier TCP communication
7 Suppose A sends 5 TCP packets to B.
7 3rd packet is lost in the path, so B doesn’t receive it

7 Upon receiving the 4t and 5t packets, B still acknowledges the receipt of every
byte up to the last byte in the 2nd packet

P In addition let’s assume that window size for both sender and receiver is 5 x 1024
= 5120 bytes

TCP Sliding Window Example

B send TCP with ack#=1025

B send TCP with ack#=2049

B send TCP with ack#=2049

B send TCP with ack#=2049

TCP Sliding Window Example

| [[[[]

EEEEN
| [[[[]

R
HEEEEE

% 7,
'o&)
19
% z
EEEREEN -

HE T
]

T.O
EEEEEEN ..,

a#Z

HEN
HEREEE

EEEREEN

mmosmen

EEEEREN

EEEEEEEEEN

TCP Flow Control

It is possible that the sender sends faster than the receiver can process

In order to avoid flooding the receiver, TCP provides flow control

Window size determines the amount of bytes that are in flight at any time
This parameter can be adjusted for flow control

Flow control:

¥ If the receiver is processing slower than it receives packets, it advertises a reduced window size
in the acknowledgement

Using Window Size header field in TCP
2 The sender then reduces its own window size accordingly

If receiver advertises window size as 0, the sender stops sending packets until the receiver
advertises a larger window size later within an acknowledgement

TCP Congestion Control

It is possible that the sender sends faster than the intermediary nodes can process
Similar to flow control, TCP congestion control is window based.

TCP computes congestion window size (cwnd) according to the level of perceived
congestion in the network

The actual window size is minimum of
7 Advertised window size in “Window Size” header field, and
2 Congestion window size (cwnd)

When a packet times out at the sender side, i.e., not acknowledged before timeout, the
sender interprets it as a packet loss

Packet loss is interpreted as congestion in the network

TCP Congestion Control

Another measure used by TCP is three duplicate
acknowledgements

7 Rather than waiting for timeouts, if a packet receives
three duplicate acknowledgements, it is considered lost
at that point

Upon sensing congestion (either by timeout or three
duplicate acknowledgements), TCP adjusts cwnd

7 If congestion is not sensed, cwnd grows gradually.
2 The growth continues until packet loss happens.
2 Then, cwnd drops to smaller size

Closing Thoughts

Recap

Today we discussed

Sliding windows
2 Sender window
2 Receiver window

TCP sliding window
TCP flow control

TCP congestion control

Next Class
Project Work Day (Tuesday)

Port Scanning (Thursday)

Project 4

Due Nov 18th

Presentation

Due Nov 23rd

