
ì
Computer Networking
COMP 177 | Fall 2020 | University of the Pacific | Jeff Shafer

TCP (4)
Transmission

Control Protocol

Transmission Control Protocol (TCP)

ì Connection oriented

ì Byte streaming

ì Full duplex

ì Reliable data transport

ì Congestion control

ì Flow control

Fall 2020Computer Networking

2

Fall 2020Computer Networking

3

Stop-and-Wait

Sliding Windows

ì Stop-and-wait protocols are not efficient as the network is idle
most of the time

ì Solution: Let the sender send packets back-to-back before
waiting for their acknowledgements
ì Constraint: we cannot let the sender get too far ahead

before receiving the acknowledgements
ì The limit defines a window size, W
ì A window is a queue of packets that can be sent back-to-

back without waiting for the acknowledgements

ì Sliding windows
ì The sender is allowed to send window size number of

packets before waiting for the acknowledgment of the first
packet in the window

Fall 2020Computer Networking

4

Sliding Windows

ì Color scheme used for presentation of sliding
windows
ì Blue: region of buffer that precedes the sliding

window
ì Green: region of buffer that refers to the sliding

window
ì Pink: region of buffer that comes after the sliding

window
ì Red: region of buffer within the sliding window

that has been sent/received

Fall 2020Computer Networking

5

Sliding Windows: Sender Window

ì The sender keeps a state variable
last_ack representing the last packet
for which it has received an
acknowledgement

ì The sender then sends packets with
sequence numbers last_ack+1 up to
last_ack+W
ì This range defines the sender window

ì If Ack[N] arrives and N > last_ack then
last_ack becomes N
ì Acknowledgements are cumulative
ì The window “slides forward”, and the

sender may send more packets

Fall 2020Computer Networking

6

last_ack last_ack+1 last_ack+W

window
W= 7

last_ack last_ack+1 last_ack+W

window
W= 7

Sender Window: Example

ì Assume that at the sender side,
ì Window size is 4, i.e., W = 4
ì Last acknowledged packet is 10

(i.e., last_ack = 10)
ì Sender window →

ì If Ack[11] arrives
ì Last_ack gets updated to 11
ì Window slides forward by 1
ì Sender window →
ì Data[15] can be sent since it is

in the window

Fall 2020Computer Networking

7

window
W= 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

window
W= 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Sender Window: Example

ì …

ì If Ack[13] arrives
ì Last_ack gets updated to 13
ì Window slides forward by 2
ì Sender window →
ì Data[16-17] can be sent

since they are in the window

Fall 2020Computer Networking

8

window
W= 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

window
W= 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Sender Window Size Comparison

Fall 2020Computer Networking

9

Sliding Windows: Receiver Window

ì Sliding sender window and timeout mechanism can detect packet loss and
initiate retransmission

ì However, it does not prevent out-of-order receipt of packets at the receiver
side
ì The receiver also needs a window of potentially the same size as sender’s W
ì The receiver buffers out-of-order packets whose sequence numbers are in

the receiver window.

ì Example: Assume that
the receiver window is →

ì The receiver can receive packets 11 to 16
ì If Data[11] is delayed, but Data[12] through Data[16] are received,

then these out-of-order packets are buffered until Data[11] arrives

Fall 2020Computer Networking

10

window
W= 6

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Sliding Windows: Receiver Window

ì At any instance, the receiver is
willing to receive packets
last_ack+1 to last_ack+W
ì This defines the receiver window

ì If the receiver receives packets in
the range last_ack+2 to
last_ack+W, the packets would
be buffered

Fall 2020Computer Networking

11

window
W= 6

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

last_ack last_ack+1 last_ack+W

ì Similar to sender, the receiver keeps the state variable last_ack

ì Receiver’s last_ack is not necessarily in sync with sender’s
last_ack

window
W= 6

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

last_ack last_ack+1 last_ack+W

Sliding Windows: Receiver Window

ì Upon receiving packet last_ack+1, the receiver
ì Examines the buffered packets,
ì Sends the largest cumulative acknowledgement to the sender
ì Updates last_ack to the largest cumulative acknowledgement

number
ì This slides the receiver window forward

Fall 2020Computer Networking

12

window
W= 6

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

last_ack last_ack+1 last_ack+W

window
W= 6

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

last_ack last_ack+1 last_ack+W

Receiver Window: Example

ì Assume that at the receiver
ì Window size is 5, i.e., W=5
ì last_ack=10
ì Packets Data[12], Data[13], and

Data[15] are already received and
buffered

ì Receiver window→

ì If Data[11] arrives, then
ì Ack[13] is sent
ì last_ack becomes 13
ì Receiver window slides forward →

Fall 2020Computer Networking

13

window
W= 5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

last_ack last_ack+1 last_ack+W

window
W= 5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

last_ack last_ack+1 last_ack+W

Cumulative Acknowledgements

ì Note that acknowledgements are cumulative.

ì Receiving out-of-order packets generates
Ack[last_ack]

ì For instance, in the previous example, upon
receiving each of Data[12], Data[13], and Data[15],
the receiver sends back Ack[10]

Fall 2020Computer Networking

14

window
W= 5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

last_ack last_ack+1 last_ack+W

Example: Loss Recovery

ì Assume scenario
ì W=4 at both ends
ì Sender has sent packets Data[5] through Data[8]
ì Data[5] is lost and all others have been received

ì Result
ì Upon the arrival of each of packets Data[6], Data[7], and Data[8], the

receiver has sent Ack[4]
ì Packets Data[6], Data[7], and Data[8] are buffered at the receiver
ì Receiver window →

Fall 2020Computer Networking

15

window
W= 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Example: Loss Recovery

ì …

ì When the sender times out, it
only sends Data[5]
ì If it arrives at the receiver,

Ack[8] will be sent
ì Receiver window →

Fall 2020Computer Networking

16

window
W= 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

window
W= 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Sliding Windows in TCP

ì TCP uses sliding windows to improve throughput

ì However, TCP is a byte stream protocol
ì Sequence numbers and acknowledgement numbers refers to bytes, not packets.
ì Window sizes are measured in terms of bytes, not packets

ì Each side announces its initial window size in the 3-way handshake using “Window
Size” field in TCP
ì Window Scale option may be used to scale the window size.

ì Example: Let’s revisit an earlier TCP communication
ì Suppose A sends 5 TCP packets to B.
ì 3rd packet is lost in the path, so B doesn’t receive it
ì Upon receiving the 4th and 5th packets, B still acknowledges the receipt of every

byte up to the last byte in the 2nd packet
ì In addition let’s assume that window size for both sender and receiver is 5 × 1024

= 5120 bytes

Fall 2020Computer Networking

17

TCP Sliding Window Example

Fall 2020Computer Networking

18

1024 bytes

seq#=1
A B

1024 bytes

seq#=1025

1024 bytes

seq#=2049

1024 bytes

seq#=3073

1024 bytes

seq#=4097

B send TCP with ack#=1025

B send TCP with ack#=2049

B send TCP with ack#=2049

B send TCP with ack#=2049

TCP Sliding Window Example

Fall 2020Computer Networking

19

A B
seq#=1

seq#=1025
seq#=2049

seq#=3073

seq#=4097

ack
#=

102
5

ack
#=

204
9

ack
#=

204
9

ack
#=

204
9

seq#=2049

T.O

ack#
=512

1

TCP Flow Control

ì It is possible that the sender sends faster than the receiver can process

ì In order to avoid flooding the receiver, TCP provides flow control

ì Window size determines the amount of bytes that are in flight at any time

ì This parameter can be adjusted for flow control

ì Flow control:
ì If the receiver is processing slower than it receives packets, it advertises a reduced window size

in the acknowledgement
ì Using Window Size header field in TCP

ì The sender then reduces its own window size accordingly

ì If receiver advertises window size as 0, the sender stops sending packets until the receiver
advertises a larger window size later within an acknowledgement

Fall 2020Computer Networking

20

TCP Congestion Control

ì It is possible that the sender sends faster than the intermediary nodes can process

ì Similar to flow control, TCP congestion control is window based.

ì TCP computes congestion window size (cwnd) according to the level of perceived
congestion in the network

ì The actual window size is minimum of
ì Advertised window size in “Window Size” header field, and
ì Congestion window size (cwnd)

ì When a packet times out at the sender side, i.e., not acknowledged before timeout, the
sender interprets it as a packet loss

ì Packet loss is interpreted as congestion in the network

Fall 2020Computer Networking

21

TCP Congestion Control

ì Another measure used by TCP is three duplicate
acknowledgements
ì Rather than waiting for timeouts, if a packet receives

three duplicate acknowledgements, it is considered lost
at that point

ì Upon sensing congestion (either by timeout or three
duplicate acknowledgements), TCP adjusts cwnd
ì If congestion is not sensed, cwnd grows gradually.
ì The growth continues until packet loss happens.
ì Then, cwnd drops to smaller size

Fall 2020Computer Networking

22

Closing Thoughts

Recap
ì Today we discussed

ì Sliding windows
ì Sender window
ì Receiver window

ì TCP sliding window

ì TCP flow control

ì TCP congestion control

Next Class
ì Project Work Day (Tuesday)

ì Port Scanning (Thursday)

Fall 2020Computer Networking

23

Project 4
Due Nov 18th

Presentation
Due Nov 23rd

