

Computer Networking

COMP 177 | Fall 2020 | University of the Pacific | Jeff Shafer

DNS

DNSSEC, DNS over TLS, DNS over HTTPS

Motivation

2

IP addresses are hard to remember 138.9.110.12? Or was it .21?

Human-friendly names are much betterengineering.pacific.edu

How can we translate between the two?

Early Days (prior to 1984)

- Each computer on the ARPAnet (early Internet) had a single file
 - hosts.txt maps all known host names to IP address
- Master list maintained by SRI Network Information Center
 - Email them if your mapping changes
 - New list produced 1-2 times a week
 - All hosts download the new list

Problems with this approach?

Domain Name System (DNS)

Distributed database implemented in hierarchy of many name servers

Application-layer protocol

- Hosts, routers, and name servers communicate to resolve names (address/name translation)
- Core Internet function, implemented as applicationlayer protocol
- Complexity at network's "edge"

DNS is Decentralized

- No single point of failure
- No distant centralized database
- **Fasier maintenance**
 - **7** Take one or a dozen servers offline without issue
- Support high traffic volume
- **オ** *** <u>Scalability</u> ***

How many DNS requests/second globally?

DNS: Scalability

Challenging to find data on global DNS requests/sec

- No global internet "dashboard"
- Internet is a "network of networks"
- Would have to inquire with AT&T, Comcast, TimeWarner, Pacific, etc
 - They would have to check stats on all of their local servers

Google Public DNS

- 1+ trillion requests/day as of August 2018
- https://security.googleblog.com/2018/08/google-public-dns-turns-8888-years-old.html

OpenDNS

- **7** 130 billion requests/day as of April 2020
- http://system.opendns.com/

7

What's in a Name?

angineering.pacific.edu

- ↗ .edu is top-level domain
- "pacific" belongs to .edu
- "engineering" belongs to "pacific"
- ↗ Hierarchical! Read from right to left
- **7** Limits?
 - Up to 127 levels of hierarchy
 - Each label can have up to 63 characters
 - **7** Full domain name cannot exceed 253 characters

DNS: Services

- Hostname to IP address translation
 - **7** *"www.pacific.edu" is* 23.185.0.4
- Hostname aliasing
 - Canonical, alias names
- Hostname load distribution
 - Replicated servers Multiple IP addresses available for one name
 - "google.com" is 74.125.239.128 or 74.125.239.135 or ... or ... or ...

DNS: Services

- Mail server aliasing
 - What are the multiple host names that receive mail for this domain?

 - Allows you to use 3rd party email services (e.g. Google Apps)
 - Mail to "pacific.edu" is directed to "pacificedu.mail.protection.outlook.com." (SPAM filtering)
- Other / Misc
 - SPF entries for email (Anti-spam)
 - DNSSEC (security/encryption)
 - Many other attributes...

DNS: Record Types (Distributed Database)

Resource Record (RR) format: (name, value, type, ttl)

- ↗ Type=A
 - **7** *name* is **hostname**
 - value is IP address
- オ Type=NS
 - *name* is domain (e.g. foo.com)
 - value is hostname of
 authoritative name server
 for this domain

→ Type=CNAME

- *name* is alias name for some
 "canonical" (real) name
- value is canonical name
- → Type=MX
 - value is name of mailserver associated with name
- ↗ Type=TXT
 - value is machine readable text (arbitrary)

DNS: Example

\$ dig pacific.edu any

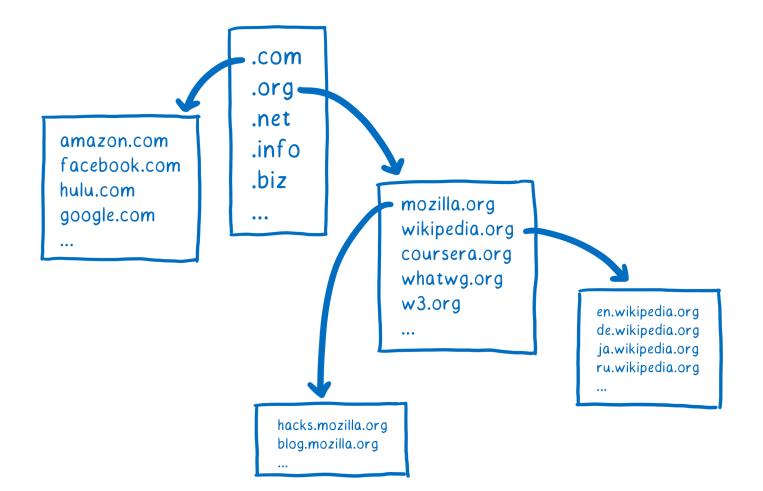
; <<>> DiG 9.8.3-P1 <<>> pacific.edu any ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5270 ;; flags: gr rd ra; QUERY: 1, ANSWER: 9, AUTHORITY: 0, ADDITIONAL: 0 ;; OUESTION SECTION: Resource Record Type ;pacific.edu. ΙN ANY **Resource Record Value** ;; ANSWER SECTION: pacific.edu. 59 IN A 52.38.242.166 pacific.edu. 59 IN A 34.210.252.224 pacific.edu. 899 IN NS ns-110.awsdns-13.com. pacific.edu. 899 IN NS ns-1289.awsdns-33.org. pacific.edu. 899 IN NS ns-2044.awsdns-63.co.uk. pacific.edu. 899 IN NS ns-705.awsdns-24.net. pacific.edu. 899 IN SOA ns-110.awsdns-13.com. awsdnshostmaster.amazon.com. 1 7200 900 1209600 86400 pacific.edu. 59 IN MX 0 pacific-edu.mail.protection.outlook.com. pacific.edu. 59 IN TXT "status-page-domain-verification=tnw7vhhyh60c" pacific.edu. 59 IN TXT "v=spf1 ip4:138.9.110.0/25 ip4:208.117.48.237 ip4:176.31.145.254 include:spf.protection.outlook.com all 2020

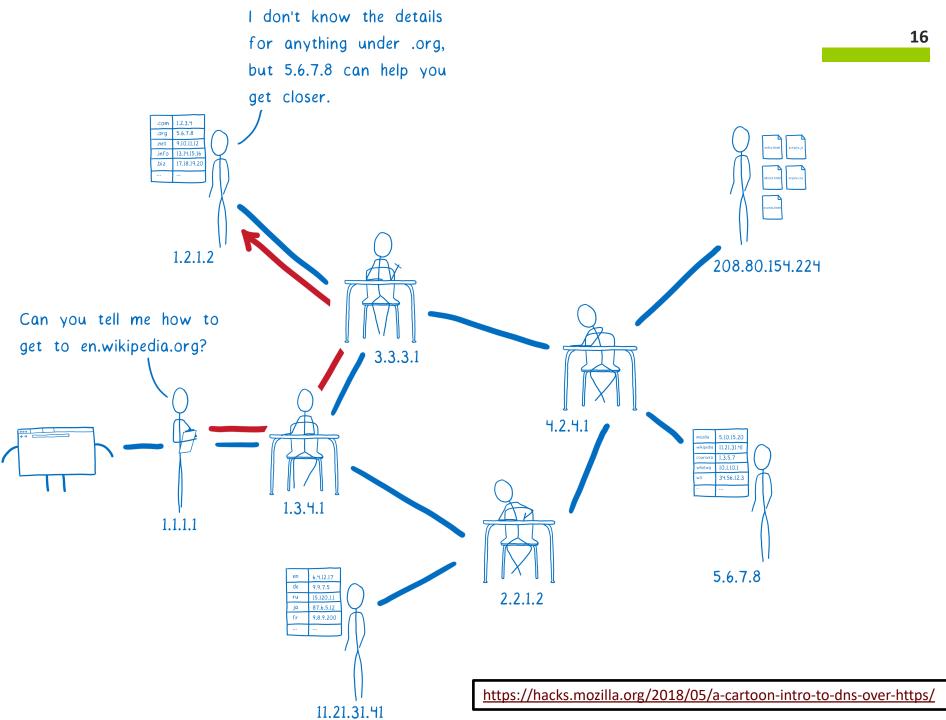
include: spf.gualtrics.com include:spf.mandrillapp.com include:stspg-

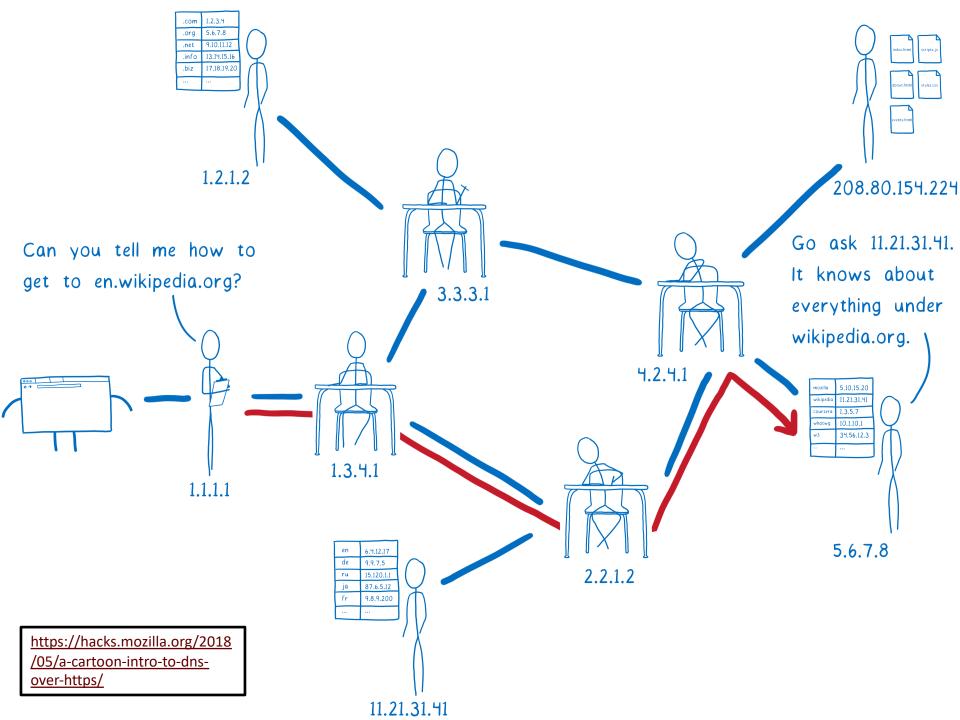
DNS: Example

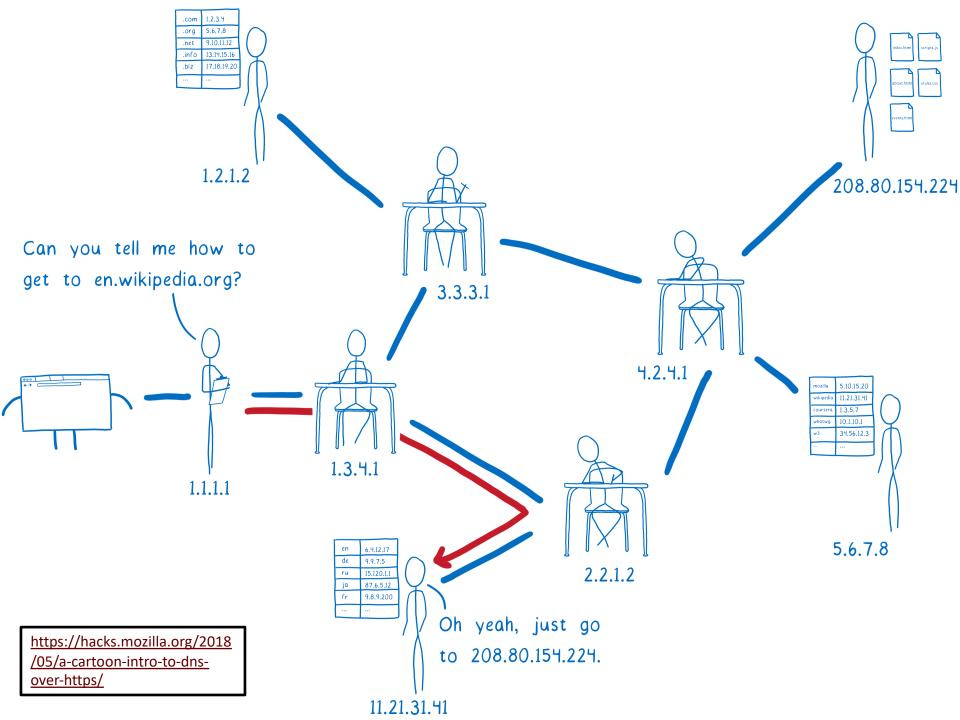
\$ dig www.pacific.edu any

; <<>> DiG 9.8.3-P1 <<>> pacific.edu any ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5270 ;; flags: gr rd ra; QUERY: 1, ANSWER: 9, AUTHORITY: 0, ADDITIONAL: 0 ;; OUESTION SECTION: Resource Record Type ;pacific.edu. ANY IΝ **Resource Record Value** ;; ANSWER SECTION: www.pacific.edu. 59 IN A 23.185.0.4 www.pacific.edu. 59 IN TXT "google-siteverification=t3PZMb1DhGWjZb0EUyfhnd zoAMN7yOkDMXyMxSHAh4" www.pacific.edu. 59 IN AAAA 2620:12a:8000::4 www.pacific.edu. 59 IN AAAA 2620:12a:8001::4 ;; Query time: 103 msec ;; SERVER: 2600:1700:b810:b988::1#53(2600:1700:b810:b988::1) WHEN: Tue Nov 24 11:28:48 PST 2020 rcvd: 197 ;; MSG SIZE


DNS: Name Resolution


- Two types
- Recursive
 - The server you contact provides the final answer
 - Behind the scenes, it may make several consecutive requests


Iterative


The server you contact directs you to a different server to get (closer to) the final answer

en.wikipedia.org = 208.80.154.224

DNS: Root Name Servers

- Contacted by local name server that can not resolve top-level domain
- Root name server:
 - Contacts authoritative name server for TLD if name mapping not known
 - **7** Gets mapping
 - Returns mapping to local name server

13 root name "servers" worldwide labeled a - m

- Each "server" is really a cluster
- Some clusters are geographically distributed
- 1094 total in Spring 2020

DNS: Root Name Servers

Computer Networking

TLD and Authoritative Servers

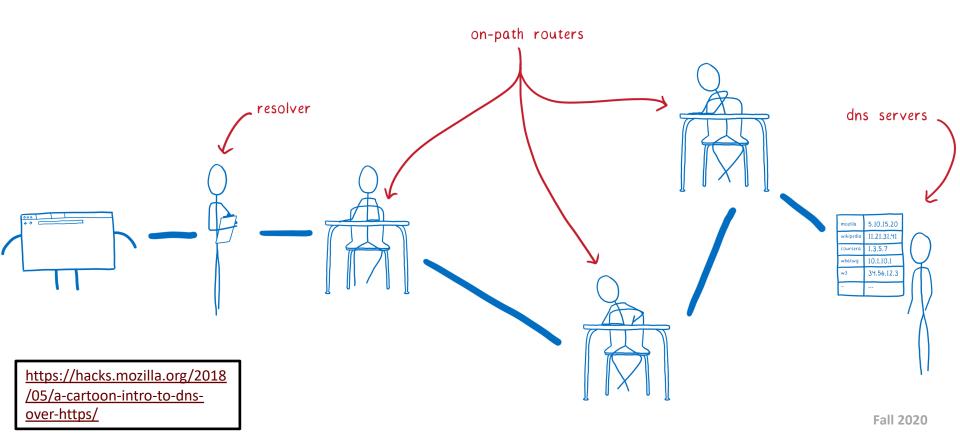
Top-level domain (TLD) servers

- Responsible for com, org, net, edu,... and all top-level country domains (uk, fr, ca, jp, ...)
- **7** Server maintainers
 - VeriSign for .com, .net TLDs
 - A Educause for .edu TLD
- Authoritative DNS servers:
 - Organization's DNS servers, providing authoritative hostname to IP mappings for organization's servers
 - Can be maintained by organization or service provider

Local Name Server (Cache)

- Aka "Stub Resolver"
- Not part of previous hierarchy
- Each ISP (residential ISP, company, university) has one or more
- When host makes DNS query, query is sent to its local DNS server
 - Maintains local cache of common DNS records
 - オ www.facebook.com?
 - Acts as proxy, forwards query into hierarchy and provides eventual reply
- You typically know this server's IP address from DHCP (upon connecting to the network)

DNS and UDP


- DNS uses UDP by default
 - ↗ It can use TCP, but it's rare
 - **↗** Isn't this unreliable?
- オ Why use UDP
 - **7** Faster (in three ways!)
 - No need to establish a connection (RTT/latency overhead)
 - Lower per-packet byte overhead in UDP header
 - Less packet processing by hosts
 - Reliability not needed
 - DNS will just re-request if no response received (2-5 seconds)

https://hacks.mozilla.org/2018 /05/a-cartoon-intro-to-dnsover-https/

POTENTIAL THREATS

7 Confidentiality

- Traditional DNS request and reply (over UDP) is plaintext
 - ISP spies on your Internet usage for profit?
 - NSA spies on your Internet usage for control?
 - **DNS** is not just for names
- Solutions: **DNS over HTTPS**, **DNS over TLS**

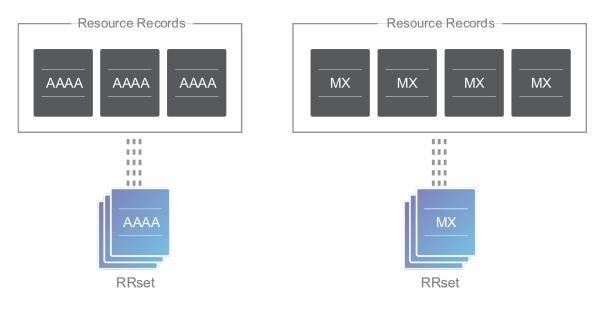
Integrity

- Traditional DNS request and reply (over UDP) is unsigned
- **ISP** tampers with reply message? (NXDOMAIN replaced with ad-laden site)
- Governments tamper with reply message? (Domain blocked by court order)
- Hackers tamper with reply message? (Redirect to malware site)
- Solutions: **DNSSEC** (and DNS over HTTP/TLS)

Availability

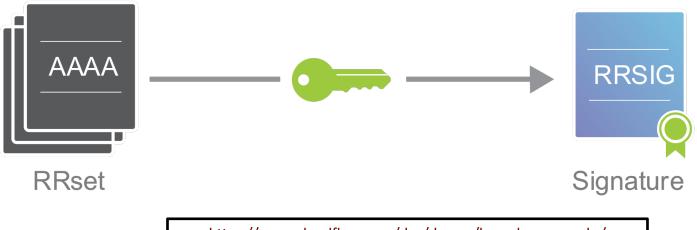
Addressed by DNS distributed database design

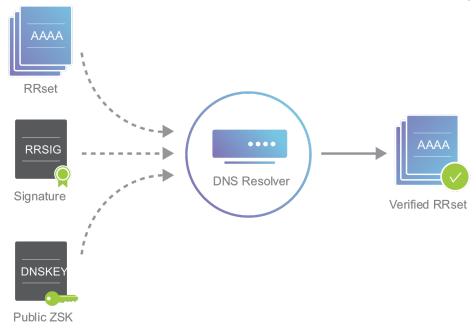
https://dnsprivacy.org



28

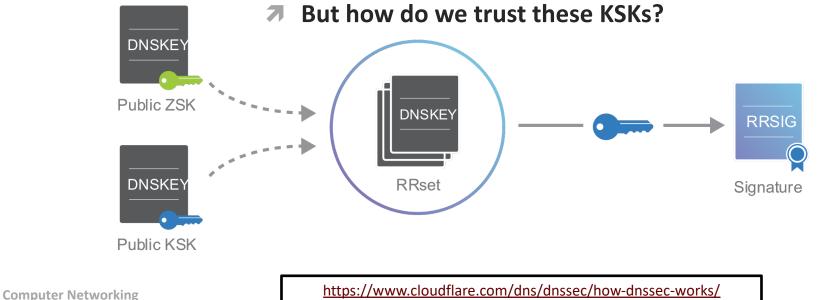
DNSSEC

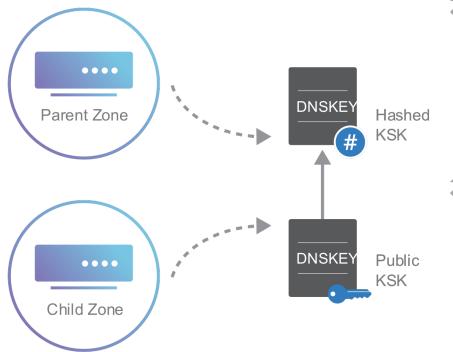

- Domain Name System Security Extensions (DNSSEC)
- Validate that a DNS response has not been tampered with
- Uses public/private keys and signatures
- Prevents some attacks against clients (e.g. DNS cache poisoning)
- Does <u>not</u> provide confidentiality
 - Communication between client and server is in plaintext


- All records of same type (AAAA, ...) grouped into resource record set (RRSet)
 - ↗ The RRSet is digitally signed, not individual record

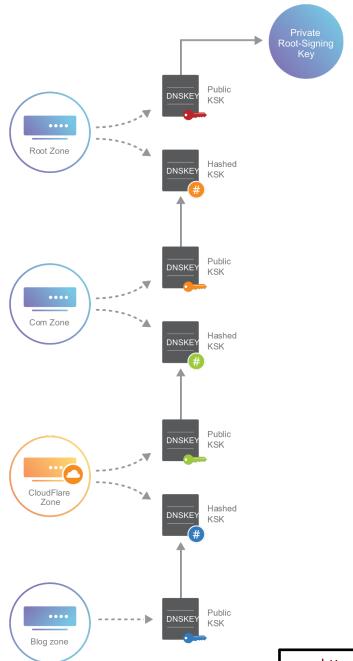
https://www.cloudflare.com/dns/dnssec/how-dnssec-works/

- Each zone has Zone-Signing Key (ZSK)
 - Private key signs entire RRset
 - Signature saved in RRSig record (stored in DNS)
 - Public key verifies entire RRSet
 - Key saved in DNSKey record (stored in DNS)

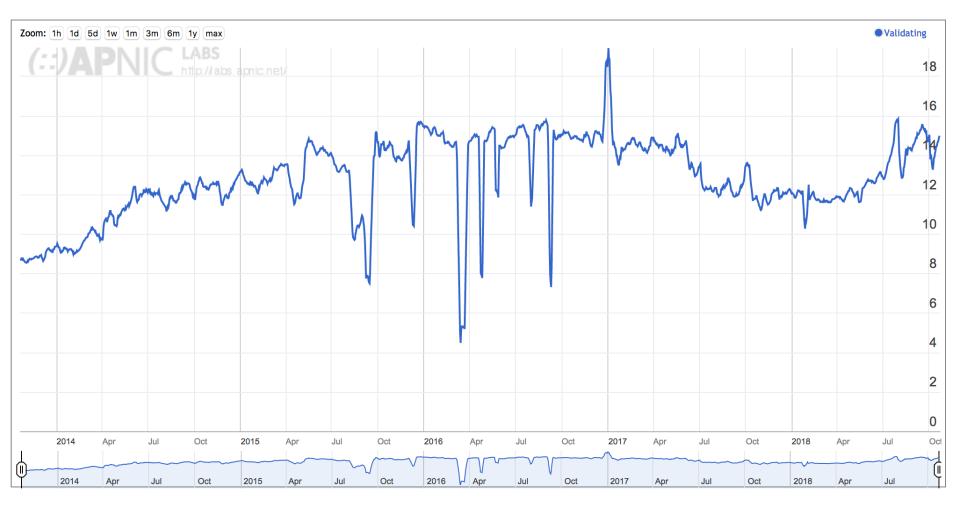




- Resolver pulls a particular record (AAAA) along with the RRSig (which signs the record set) and public Zone Signing Key (which verifies the RRSig)
 - Resolver verifies signature
 - But how does it trust the public ZSK?


DNSSEC name servers have Key Signing Keys (KSK)

- ↗ KSK is used to sign public Zone Signing Key (ZSK)
- Name server publishes public KSK in a DNSKey record


- Delegation Signer (DS) records allow trust to be transferred from Parent zone to Child Zone
- Hash of DNSKey record (containing KSK) is produced by zone operator (e.g. example.com) and given to parent zone (e.g. .com)

- Chain of Trust
 - Root is self-signed societal engineering challenge to rotate root KSKs on periodic basis
- DNS Root zone KSK last rotated October 11 2018
 - Previous key was from 2010

35

Use of DNSSEC Validation for World (XA)

Very slow adoption of DNSSEC – Is trend even increasing?

RFC 4033 released in 2005

http://stats.labs.apnic.net/dnssec/XA?c=XA&x=1&g=1&r=1&w=7&g=0

https://blog.apnic.net/2018/02/26/peak-dnssec/

DNSSEC Validation Rate by country (%)

0

89

DNS over TLS

38

Motivation

- DNS sent over plaintext is vulnerable to snooping and manipulation
 - **7** Encrypt it!

DNS Over TLS

- Encrypt DNS queries/responses over TLS connection
 - Uses existing DNS functionality to send queries/responses over TCP (infrequently used)
 - Now just encrypted via TLS
 - **TCP** port 853
 - **7** [RFC 7858]
- Provides Confidentiality + Integrity for MITM attacks (no eavesdropping / no tampering)
 - Key caveat The DNS server itself could provide a malicious reply. This does not replace need for DNSSEC!

Adoption

Clients

- Linux Systemd
 - Implemented as-of June 2018 (v239)
 - Off by default
- Android 9+
- → iOS 14+
- Stubby
 - Local DNS Privacy Stub Resolver
 - https://dnsprivacy.org/wiki/display/DP/DNS+ Privacy+Daemon+-+Stubby

DNS Services

- **7** Cloudflare (1.1.1.1)
- **7** Quad9 (9.9.9.9)

DNS over HTTPS (DOH)

Motivation

- Network operators use DNS as means to enforce policy
 - **7** Though Shall NOT Access That Website
 - Oppressive government?
 - Oppressive network operator?
 - Responsible network operator trying to save you from visiting malicious websites?

DNS Over HTTPS

- Encode DNS queries and responses over HTTPS
 - **7** [RFC 8484]
- Advantages (for web browsers)
 - Privacy (DNS request/response encrypted)
 - Tamper resistance: Network operators can't block DNS without also blocking HTTPS
 - Which is very obvious to the end user
 - Network operators can't even <u>tell</u> there's DNS data being sent
 - Reduced latency

 - Browser can do DNS directly, no need to invoke system resolve
 - Proxying and caching will work for DNS too

DNS Over HTTPS

- Can work independently from existing DNS methods
 - **D**UDP
 - **7** TLS [RFC 7857]
 - **D**TLS [RFC 8094]
- DNS response data (identical bytes as UDP response) is placed in HTTPS playload
 - MIME type: application/dns-message
 - HTTP/2 server push can even send values to client in advance of request
- Key caveat The DNS server itself could provide a malicious reply. This does not replace need for DNSSEC!

Adoption

Clients

- Web browsers
 - **オ** Typically opt-in
 - Chrome, Firefox, Edge
- 7 iOS 14+, macOS 11+
- Windows 10

DNS Services

- Cloudflare (1.1.1.1)
- Quad9 (9.9.9.9)

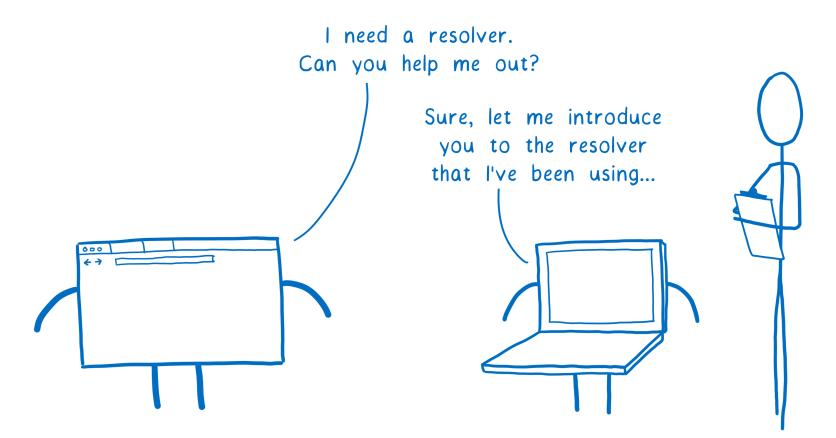
DOHysteria /dəʊ hɪˈstɪərɪə/

noun

exaggerated or uncontrollable emotion or excitement surrounding DNS over HTTPs

Origin: Geoff Huston

DOH Challenges


- Browser can use a different DNS namespace than the rest of your computer (email, chat, etc.) that still uses the system resolver
 - Browser can "punch-through" local infrastructure
- Implications on naming consistency across applications?
 - DNS Split-Horizon hacks: PacificNet example with students using Google Public DNS while on-campus

Computer Networking

- Web browsers (and other applications) use the resolver provided by the operating system, which is (typically) provided via DHCP
 - **7** But they don't <u>have</u> to....

Cloudflare (1.1.1.1)

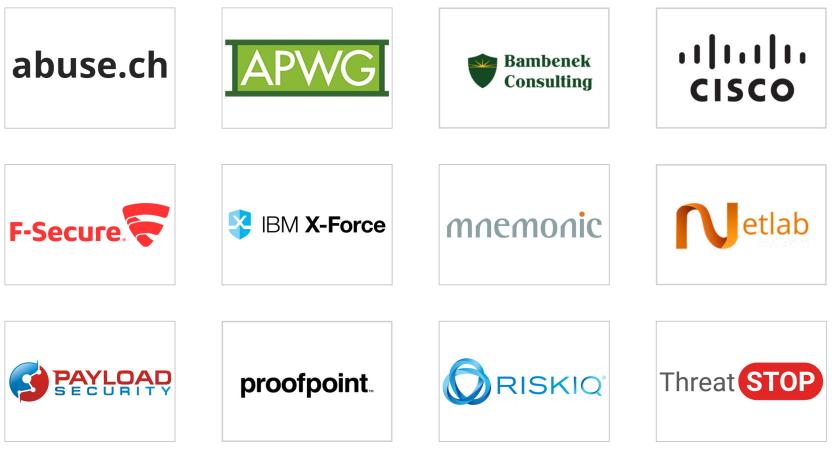
DNSSEC: YES DNSoTLS: YES DOH: YES

- Privacy policy
 - Discard all personally identified information after 24 hours
 - Never sold to third parties

Google Public DNS (8.8.8.8)

IBM Quad 9 (9.9.9.9)

DNSSEC: YES DNSoTLS: YES DOH: YES


Blocks access to domains considered threat to security by "threat intelligence partners"

. 199.43.133.53

IBM Quad 9 (9.9.9.9)

Quad9 Threat Intelligence Partners (https://www.quad9.net/about/)

DNS and Security

https://dnsprivacy.org

7 Good reference for ongoing work in this area!

Closing Thoughts

Recap

- Today we discussed
 - Domain Name System
 - DNS Security Techniques
 - **DNSSEC**

 - DNS over HTTPS

Next Class

- オ Last Class! ☺
 - オ HTTP/2 (SPDY)

Project 5