Computer Networking

COMP 177 | Fall 2020 | University of the Pacific | Jeff Shafer

HTTP/3

(also: HTTP/2, SPDY, QUIC)

HTTP/2 (and "Google SPDY")

Timeline

1991 1996 1987 2008 2012 2015 2018

HTTP 0.9 HTTP 1.0 § HTTP 1.1 SPDY 1.0 g SPDY 2.0 g HTTP 2.0 HTTP 3.0

HTTP/0.9 (not an RFC: https://www.w3.org/Protocols/HTTP/Asimplemented.html)
Initial version of HTTP — a simple client-server, request-response, telnet-friendly protocol

Request nature: single-line (method + path for requested document)
Methods supported: GET only

Response type: hypertext only

Connection nature: terminated immediately after the response

No HTTP headers (cannot transfer other content type files), No status/error codes, No URLs,
No versioning

AN N ININDN

https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

Timeline

1991 1996 1987 2008 2012 2015 2018

HTTP 0.9 HTTP 1.0 § HTTP 1.1 SPDY 1.0 g SPDY 2.0 g HTTP 2.0 HTTP 3.0

HTTP/1.0 — RFC 1945 (May 1996)
72 Browser-friendly protocol

A Provided header fields including rich metadata about both request and response
(HTTP version number, status code, content type)

72 Response: not limited to hypertext (Content-Type header provided ability to
transmit files other than plain HTML files — e.g. scripts, stylesheets, media)

7 Methods supported: GET , HEAD, POST
A Connection nature: terminated immediately after the response

https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

Timeline

1991 1996 1987 2008 2012 2015 2018

HTTP 0.9 HTTP 1.0 § HTTP 1.1 SPDY 1.0 g SPDY 2.0 g HTTP 2.0 HTTP 3.0

HTTP/1.1- RFC 2068 (January 1997)

72 Performance optimizations and feature enhancements
Persistent and pipelined connections
Chunked transfers

Compression/decompression
Virtual hosting (a server with a single IP address hosting multiple domains)

. Methods supported: GET , HEAD, POST , PUT , DELETE , TRACE , OPTIONS
A Connection nature: long-lived

https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

R

i

w %

Motivations

What’s wrong with HTTP/1.1?

?” Complicated specification

72 Many options / incomplete implementations
72 Performance limitations

Why does it take so long to load a web page?

htt . REPORTS ~ DISCUSS ABOUT ~

arcnive

<[>

The HTTP Archive Tracks How
the Web is Built.

We periodically crawl the top sites on the web and record detailed information about
fetched resources, used web platform APIs and features, and execution traces of
each page. We then crunch and analyze this data to identify trends — learn more
about our methodology.

View Reports

https://httparchive.org/

https://httparchive.org/

Total Kilobytes

The sum of transfer size kilobytes of all resources requested by the page.

See also: Page Weight

Zoom 1lm 3m

3500
3000
2500

2000

Total Kilobytes

1500

1000

500

6m YTD

ly

3y

All

1533.5 KB 1269.3 KB
A227.9% A776.6%

Timeseries of Total Kilobytes
Source: httparchive.org

From Nov 15, 2010

To Oct 15, 2018

0
Jan'11 Jul'11 Jan'12 Julf12 Jan'13 Jul'l3 Jan'14 Jul '14 Jan'15 Jul'15 Jan'16 Jul'1l6 Jan|'17 Jul'iz Jan'18 Jul'18
Alg]

[

4

Computer Networking

3 2014 2015 2016

— Desktop — Mobile

2017

https://httparchive.org/reports/state-of-the-web

2018

[

»

Fall 2020

https://httparchive.org/reports/state-of-the-web

Total Requests
The number of resources requested by the page.

See also: Page Weight

MEDIAN DESKTOP MEDIAN MOBILE
A29.3% A294.1%
Timeseries of Total Requests =
Source: httparchive.org
Zoom 1lm 3m 6m YTD 1ly 3y Al From Nov 15,2010 To Oct 15,2018

150

125
w

w 100
()]
3
o
[
4

® 75
o
|_

50

25

0

Jan'11l Jul'll Jan'12 Jul|'12 Jan'13 Jull'13 Jan'14 Jul'14 Jan'l5 Jul'15 Jan'l6 Jul'le Jan|'17 Jul'17 Jan'l8 Jul'18
8]
m 2012 2013 2014 2015 2016 2017 2018
4 m »
— Desktop — Mobile

Computer Networking https://httparchive.org/reports/state-of-the-web Fall 2020

https://httparchive.org/reports/state-of-the-web

TCP Connections Per Page

The number of TCP connections per page.

19 Connections 18 Connections
V24.0% V43.8%
Timeseries of TCP Connections Per Page =

Source: httparchive.org

Zoom 1lm 3m 6m YTD ly 3y Al From May 15,2014 To Sep 23,2018

()]
o

v
o

H
o

w
o

e\ - ‘

|
(
|

TCP Connections Per Page (Connections)

=
o

Sep '14 Jan'l5 May '15 Sep '15 Jan'l6 E May '16 Sep '16 JanE7 Ma%?h Sep '17 Jan'18 May '18 Sep '18

Il
2014 m 2015 2016 2017 2018 D\
1 »

-

— Desktop — Mobile

Computer Networking https://httparchive.org/reports/state-of-the-web Fall 2020

https://httparchive.org/reports/state-of-the-web

Performance

Many files (Median of ~75 in 2018)
72 Some files are large, some files are small

Many TCP sockets (Median of ~19 in 2018)
2 More than one file per socket

? Resource penalty + time penalty to just open yet more
sockets

Problems
7 Latency between requests

HTTP Pipelining typically disabled by default
? Head-of-line blocking

Multiple requests over same socket, large file blocks small file
Not solved by HTTP Pipelining

HTTP Performance Hacks

I N G I = N 7 R

L N[[[W]« F Dedl SR ool < | = Sprite Sheets
LIIHEIVIZESE V40D 1l B a—

- ™ S e =l nin S EC N Instead of sending
TSR a1 ISR many tiny images,

L

=1 IE=E TSR B
1 =R = IPXENED o EEEY

send one big image
and use JavaScript/CSS

T o R I = -

—— | L U (O AT [(@) to pull out the desired
T Pl] LTRSS o ol TV) e pieces

—t | e e <

=EOL 31T R 2 =" Inefficient if only a few
i e I = ST M= -

e | T —— pieces are needed
T I ey ——

HTTP Performance Hacks

.iconl { InIining

??Zkgrogn&) ! 54 <datas) 2 Embed data inside
ur ata.:lmage ng,; pase ’ ata . .
ge/png the CSS file instead

no—-repeat;

) of as separate files

.iconZ { Concatenation
background: . .

url (data:image/png;base6c4d,<data>) 7 Combl_ne rT1uIt|pIe IS

no-repeat; / CSS files into

} megafiles before

sending to client

200 GET W 174pg w.cdn-expressen.se jpeg 6.14KB -105ms

200_GET “ 174 ipg v.cdn-expressen.se jpeg 4.19KB |1-2172ms

200 dn-expressen.se jpeg 448KB |-223 ms

200 Z .Cdn‘exp ressen.se dn-expressen.se ipeg 458KB |-»173ms

2008 dn-expressen.se ipeg 35.18KB -—>56 ms

20 X.CAn-expressen.se |fun-expressense jpeg | 12.97 KB |- 165 ms H I I P H a C kS
200 dn-expressen.se jpeg 483KB -56ms

200 y.Cdn-eXpressen.Se dn-expressen.se ipeg 9.54KB |-228 ms

2008 dn-expressen.se jpeg 182.50KB |- 285 ms

2o W.cdn-expressen.se |fan-exressense Pea | Sookn A

200 dn-expressen.se jpeg 12.24KB |- 287 ms

200} y-Cdn'expressen o] dn-expressen.se ipeg 6.85KB |-=225ms

2008 dn-expressen.se ipeg 750KB |-2173 ms

200 Z.C dn'exp ressen.se dn-expressen.se gif 2.85KB |-227 ms o .

2008 dn-expressen.se jpeg 50.87 KB |-=188 ms D S h d

200 W.Cdn-exp ressen.se dn-expressen.se jpeg 6.65KB —55ms O m a I n a r I ng

200 BT T 2000 Ytdn-expressen.se jpeg 6.09KB |-196 ms

200 GET 540.jpg z.cdn-expressen.se jpeg 16.14KB -67 ms

200 GET m 540.jpg w.cdn-expressen.se jpeg 19.89KB -=112ms . . .

200 GET B 174.jpg z.cdn-expressen.se jpeg 5.03KB -55ms AVO I d p e r— h O St I I m ItS

200 GET Bl s20.pg w.cdn-expressen.se jpeg 21.27KB - 108 ms

200 GET .1 540.jpg x.cdn-expressen.se jpeg 5.43KB |-237ms .

200 GET Elm.jpg y.cdn-expressen.se jpeg 6.08KB |-169 ms O n # Of CO n n e Ct I O n S by
200 GET il 174%pg w.cdn-expressen.se jpeg 5.62KB -105ms

200 GET 540.jpg x.cdn-expressen.se jpe 20.32KB |-=241 ms H b 't

200 GET g 174.jpg z.cdn-expressen.se ;pe: 6,66 KB -=55ms S p re a d I n g We S I e

200 GET BE 520.jpg x.cdn-expressen.se jpeg 11.13KB |1-237 ms

200 GET R 265.pg w.cdn-expressen.se jpeg 520KB -111lms

200 GET ¥ 265.ipg x.cdn-expressen.se ipeg 6.93KB |- 288 ms a C rOSS m a ny

200 GET ‘ 265.jpg x.cdn-expressen.se jpeg 12.09KB |-249 ms o))

200 GET . 265.jpg z.cdn-expressen.se jpeg 5.92KB |-167 ms Se p a rate h OSt n a m e S
200 GET il original.jpg y.cdn-expressen.se jpeg 64.28KB |-192ms

200 GET I original.jpg w.cdn-expressen.se jpeg 21.88KB -106 ms

200 GET n 540.jpg w.cdn-exgressen.se jpeg 18.77KB ->112ms

200 GET B 128.pg z.cdn-expressen.se jpeg 3.34KB -55ms h b

200 GET @i 265 jpg x.cdn-expressen.se jpeg 13.00KB |-245 ms H OW d Oe S t e rOWS e r
200 GET n 265.jpg y.cdn-expressen.se ipeg 9.19KB |1-194ms . ..

200 GET m 540.jpg w.cdn-expressen.se ipeg 13.13KB -108 ms O S) t t h

200 GET ! 174.jpg y.cdn-expressen.se jpeg 5.66KB |-197 ms (O r p rl O rl I Ze e Se
200 GET % 174.jpg z.cdn-expressen.se ipeg 556KB -55ms .

200 GET &l 174.pg w.cdn-expressen.se jpeg 5.07KB -1llms CO n n e Ct I O n S ?

200 GET & 174.jpg z.cdn-expressen.se jpeg 6.16 KB -59ms

200 GET i 174.jpg y.cdn-expressen.se jpeg 6.57KB |-210 ms

200 GET JH 174.pg y.cdn-expressen.se jpeg 458KB -12ms

200 GET - 265.jpg y.cdn-expressen.se jpeg 11.49KB /=173 ms

Timeline

IETF HTTPbis working group

72 Formedin 2007

Finalized HTTP/2 — RFC 7540 (May 2015)
Finalize HPACK — RFC 7541 (May 2015)
Heavily derived from Google SPDY work
https://http2.github.io/

N N N

Google SPDY
2 Released in Chrome in 2010
2 Withdrawn in Chrome in 2016

https://http2.github.io/

HTTP/2

Make the web faster and eliminate the design hacks

Maintain high-level compatibility with HTTP/1.1
2 Methods, status codes, URIs, ...
? No changes to web pages, web apps, ...

Reduce Latency -> Reduce Page Load Times

? Compress headers
- —ServerPush

Upcoming removal from Chrome — now considered more efficient for client to request resources it needs
after checking the local cache:

https://groups.google.com/a/chromium.org/g/blink-dev/c/K3rYLvmQUBY/m/vOWBKZGoAQAJ ?pli=1

72 No head-of-line blocking (not fully successful here...)
Request pipelining
72 Request multiplexing over single connection

N

https://groups.google.com/a/chromium.org/g/blink-dev/c/K3rYLvmQUBY/m/vOWBKZGoAQAJ?pli=1

HTTP/2 Binary

Advantages of Binary

72 Simplifies parsing (Ease? Hine-endings?
ilseseseny

2 Compact representation
72 Simplifies multiplexing and prioritization
72 Impact: Reduces latency, improves throughput

Disadvantages of Binary

2 Can’t fire up Telnet to port 80 and demonstrate
HTTP any more

(couldn’t do that with HTTPS anyway...)

HTTP/2 Protocol

Application (HTTP 2.0)

HTTP 1.1

Binary Framing

Session (TLS) (optional)

Transport (TCP)

POST /upload HTTP/1.1

Host: www.example.org
Content-Type: application/json
Content-Length: 15

{"msg”:"hello”}

Network (IP)

HTTP 2.0

HEADERS frame

DATA frame

https://developers.google.com/web/fundamentals/performance/http2/

https://developers.google.com/web/fundamentals/performance/http2/

HTTP/2 Protocol

Stream = Bidirectional flow of data
2 Streams can carry 1 or more messages

7 Binary format allows multiple streams to exist over
single TCP connection

Message = Collection of frames that, combined,
form a request or response message

Frame = Fundamental unit of communication

2 Note that these are frames inside the TCP
connection, not Ethernet frames...

HTTP/2 Protocol

Connection
Stream 1
Request message
HEADERS frame (stream 1)
:method: GET
:path: /index.html
:version: HTTP/2.0 —>
:scheme: https
user-agent: Chrome/26.0.1410.65
Response message
HEADERS frame (stream 1) DATA frame (stream 1)
:status: 200
:version: HTTP/2.0
<— server: nginx/1.0.11 .. response payload... e
vary: Accept-Encoding
Stream N .
—{ 1
<] 1

https://developers.google.com/web/fundamentals/performance/http2/

https://developers.google.com/web/fundamentals/performance/http2/

HTTP/2 Protocol

Frame Format Frame Types
Length DATA
Type HEADERS
Flags PRIORITY
Stream Identifier PUSH_ PROMISE

2 Server push
Payload

WINDOW _UPDATE
2 Flow control

(10 frame types in total)

(lient

HTTP/2 Multiplexing

HTTP 2.0 connection

- | stream 1 stream3 | stream3 | stream T -
DATA | HEADERS DATA DATA | ™

e ——— Ey........ =)

Server

https://developers.google.com/web/fundamentals/performance/http2/

Interleave multiple requests / responses without head-of-line blocking

7

Ability for client or server to prioritize frames

Single TCP connection to each “origin” (host)

7
7

Connection overhead and initial latency (especially TLS) is amortized over multiple file transfers
More efficient than opening multiple connections

https://developers.google.com/web/fundamentals/performance/http2/

HTTP/2 Compression

Request #1 S Request #2 HPACK Header Compression (RFC 7541)
:method GET . p. . :method GET
implicit code
:host | example.com F———» :host | example.com

v | Reduces transfer size

:path| /resource | i :path }/new_resource
, : implicit ; ;
accept | image/jpeg —— accept | image/jpeg Client and server maintain list of previously-
user-agent | Mozilla/5.0 .. —— L user-agent | Mozilla/5.0.... seen fields
7 No need to re-transmit duplicate values
(refer to them by index number)
HEADERS frame (Stream 1) HEADERS frame (Stream 3)
:method: GET path: /new_resource Operates with bounded memory requirements

:scheme: https
:host: example.com
:path: /resource

(i.e. embedded systems)

accept: image/jpe Resistant to security flaws _
user-ageﬁt: Moz?llaj/ps,g,,, I\(/(Ie(gj C;IM)E — Compression Ratio Info-leak
ade Easy

7 Steal HTTP cookies from TLS connection by
observing impact of random payloads on
https://developers.google.com/web/fundamentals/performance/http2/ compressed ciphertext length

https://developers.google.com/web/fundamentals/performance/http2/

HTTP/2 Compression

Is header compression worth the code?

Typical page
A ~75 assets
2 ~1400 bytes per request (referrer tag, cookies, ...)

7-8 round trips just to transmit requests

Limited by TCP slow start congestion control

?2 Can only have a few outstanding packets until ACKs begin
returning

Benefits increase the greater your network latency
72 Mobile LTE latency: 100+ ms (best case)

HTTP/2 Security

HTTP/2 standard (RFC 7540) supports unencrypted
connections

Subject of much debate! (Should encryption be
mandatory?)

A Pros:
Security security security

Prevents tampering from annoying middleboxes
assuming anything over port 80 is plain HTTP/1.1

2 Cons:
Not all content has to be encrypted

Performance / latency / etc...

HTTP/2 Security

HTTP/2 standard (RFC 7540) supports unencrypted
connections

7 Client starts with HTTP/1.1 and sends header:
Upgrade: hZ2c

7 Serverresponds with HTTP 101 Switching
Protocol status code

72 Rareinwild! (curl?)

Major browser implementations (Firefox, Chrome,
Safari, etc...) only support HTTP/2 over TLS connections

? Consistent with overall design philosophy of HTTPS
everywhere: New features only enabled over HTTPS

HTTP/2 Protocol

How to “enable” HTTP/2?

Application Layer Protocol Negotiation
(ALPN) — RFC 7301

2 Part of TLS handshake

? Client provides server with list of protocols it
supports

Server picks one it prefers

2 Performance optimization that avoids additional
roundtrip of starting with HTTP/1.1 and upgrading to
HTTP/2

HTTP/2 Adoption

Widespread support!

Web browsers
2 Chrome, Safari, Firefox, Edge, ...

Web servers
2 Apache, nginx, IS, ...

Content delivery networks
A Akami, Azure, Cloudflare, AWS CloudFront, ...

HTTP/2 Requests

The percent of all requests in the crawl using HTTP/2.

DESKTOP MOBILE
65.7% 65.6%
A300.6% A304.9%
Timeseries of HTTP/2 Requests =

Source: httparchive.org

Zoom 1lm 3m 6m YTD ly 3y All From | Feb 13,2016 To Oct1, 2020

60

50

40

30

HTTP/2 Requests (%)

20

10

May '16 Sep '16 Jan|'17 May '17 Sep '17 Jan'18 May '18 Sep '18 May '19 Jan 20 Sep '20

Jan '@6 Jut6——— TJan '17 N1z S Jan '18 Jul'18 Jul '19 Jul 'z@
4 1] »
— Desktop — Mobile

Computer Networking https://httparchive.org/reports/state-of-the-web Fall 2020

https://httparchive.org/reports/state-of-the-web

33

HTTP/3 (and “"Google QUIC")

34

It’s a Google thing....

Google

(Originally)

Computer Networking

IIIIIIII

Google Engineering Motivations

Goal: Decrease end-user latency on web
2 To increase user engagement...

2 So they see more ads...

Approaches

72 Expand Google’s content delivery network to be
physically closer to audience

Fewer network hops, fewer wire delays
? Develop and optimize web browser (Chrome)
? Update HTTP protocol (HTTP/2)

Google Engineering Motivations

HTTP/2 (based on Google SPDY)

Decrease end-user latency via
?” Compressing HTTP headers (fewer bits)
7 Pipelining requests

72 Multiplexing many HTTP requests onto single TCP
connection

A Allow b cntic [

37

How do you make the web faster? Google

A A

SBROWSER Launch your Chrome

- own browser
- HTTP/1.1 HTTP/2
£ ~ Update HTTP
= TLS 1.2
— \4
= || mmm—————
2 TCP
° What about this part of the stack?
o IP
o
N
-
: Build a Google CDN
- carrier-grade
google.com network google.com

https://www.nanog.org/sites/default/files/meetings/NANOG64/1051/20150603 Rogan Quic_Next Generation vl.pdf

Computer Networking Fall 2020

https://www.nanog.org/sites/default/files/meetings/NANOG64/1051/20150603_Rogan_Quic_Next_Generation_v1.pdf

Google Engineering Motivations

Problems demonstrated in HTTP/2 testing
?2 TCPis in-order delivery protocol

All packets are precious!

Head-of-Line problem: Loss of a single packet prevents
delivery of all behind it until (slow) retransmission occurs

72 If multiple streams are being sent through single TCP
connection, all are delayed

Can we do better?

72 Challenge: TCP is baked into the operating system kernel
(Windows, OS X, Linux) — Difficult for even Google to
modify

Transmission Control Protocol (TCP)

TCP is connection-oriented
72 3-way handshake used for connection setup

TCP provides a stream-of-bytes service

TCP is reliable

Acknowledgements indicate delivery of data

Checksums are used to detect corrupted data

Sequence numbers detect missing, or mis-sequenced data
Corrupted data is retransmitted after a timeout
Mis-sequenced data is re-sequenced

(Window-based) Flow control prevents over-run of receiver

AN NN

TCP uses congestion control to share network capacity among users

QUIC Overview

Quick UDP Internet Connections

7

Roughly, TCP+TLS+HTTP/2 on top of UDP

Design Goals

7

N N NN

A

Provide multiplexed connections between two hosts
(without head-of-line blocking)

Provide security (equivalent to TLS) — always encrypted
Reduce connection establishment latency
Improve congestion control

Provide bandwidth estimation to applications to avoid
congestion

“Innovate” at the userspace
(not constrained by OS kernel, legacy clients, middleboxes)

User Datagram Protocol (UDP)

UDP is a connectionless datagram service

2 There is no connection establishment: packets may show up at any
time

UDP packets are self-contained

UDP is unreliable

7 No acknowledgements to indicate delivery of data

Checksums cover the header, and only optionally cover the data
Contains no mechanism to detect missing or mis-sequenced packets
No mechanism for automatic retransmission

No mechanism for flow control or congestion control (sender can
overrun receiver or network)

N N NN

Traditional Architecture

HTTP/1.1 on top of TCP
Multiple connections to same server (for parallelism) require multiple TCP sockets

HTTP
Application Layer

€ Transport Layer TCP
3

>

v

.,::” Network Layer IP
®

(]

& Link Layer

QUIC Architecture

HTTP/2 on top of QUIC
Single UDP stream presented to operating system (multiplexed)

HTTP/2 API

Application Layer

Transport Layer

-
=

£
Q
)
(7]
>
v
,§° Network Layer
o
o
]
Q
o

Link Layer

Physical Layer Bits on a Wire

QUICvsTCP

QUIC uses server UDP port 443 instead of TCP 443

QUIC is fully encrypted by default
? Except for flags, connection ID, and sequence number

72 Avoids network ossification by “helpful” network operators
and middleware boxes

QUIC retransmits data with new sequence numbers and re-
encrypts them

? Improves loss recovery and RTT measurement

QUIC has no head of line blocking

72 Only the stream with the missing packet is blocked
72 All other streams can continue

TCP 3-Way Handshake

Client Server

Client

S|

. -Supported ciphers
@ Client Hello Random Number

-Session ID
NI

- Server Hello @]

TLS

Server

Handshake

- - Server Certificates @ 2
-Selected ciphers

-Random Number
-Session ID
-SNI (empty) —

- Server Hello Done —

@ Client Key Exchange Message

-Encrypted pre-
master secret

@ Key Generation Key Generation @ 3

@ Cipher Spec. Exchange —>
—>

Finished

- Cipher Spec. Exchange @ 4
-

Finished @ —
HandShake Protocol

Record Protocol

Application Data +—> Application Data

Computer Networking Fall 2020

QUICvsTCP

Zero RTT Connection Establishment

TCP TCP + TLS QUIC
(equivalent to TCP + TLS)

Sender Receiver

100 ms 200 ms' 0 ms'
300 ms? 100 ms?

1. Repeat connection
2. Never talked to server before

https://peering.google.com/#/learn-more/quic

https://peering.google.com/

QUIC Zero RTT Connections

QUIC Connection Setup

e

N N N

0 round-trips to a known server (common)
1 round-trip if crypto keys are not new
2 round-trips if QUIC version negotiation needed

After setup, HTTP requests/responses flow over
connection

QUIC inspired TLS 1.3 Zero RTT handshake

https://datatracker.ietf.org/meeting/98/materials/slides-98-edu-sessf-quic-tutorial-00.pdf

https://datatracker.ietf.org/meeting/98/materials/slides-98-edu-sessf-quic-tutorial-00.pdf

QUIC Congestion Control

QUIC builds on decades of experience with TCP

Incorporates TCP best practices

#A TCP Cubic - fair with TCP FACK, TLP, F-RTO, Early
Retransmit...

Adds signaling improvements that can’t be done to
TCP

7 Retransmission uses a new sequence number

72 Avoid ambiguity about which packets have been
received

Mobile

QUIC better supports mobile clients
72 Handing off between WiFi and cell network

?2 Switching apparent IP addresses

QUIC token allows a client to continue with an
established connection even if the IP address
changes

Performance

Strong network connection?
72 3% latency improvement

Weak network connection?
(99% percentile of connections to Google search)

7 Reduced page loading time by 1 second

? Strong benefit over TCP on marginal internet connections
(third world/emerging markets, high latency satellite
Internet, lousy mobile devices over weak WiFi, etc...)

YouTube
72 30% fewer rebuffers (video pauses)

Standardization as HTTP/3

Internet Engineering Task Force (IETF)
Working Group formed in 2016 - https://quicwg.org/

A Draft HTTP/3 standard published November 215, 2020

Not just adopting Google QUIC

72 Google’s QUIC was an experiment, tested on a large scale,
yielding valuable data

N

Replacing “Google crypto” with TLS 1.3
Standardizing APlIs

New packet format (long headers and short headers)

N 3N

https://quicwg.org/

HTTP/3 Adoption

Under Development

Web browsers
?” Chrome (79+), Safari (14+), Firefox (72+), Edge (Canary build+)
72 Typically disabled by default

Web servers & content delivery networks
? “Experimental / technology preview stage” (CloudFlare is production...)

Enabled at Facebook
72 “More than 75 percent of our internet traffic uses QUIC and HTTP/3”

Facebook App and Instagram App, not website

7 https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-
bringing-quic-to-billions/

Enabled at Google

https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/

