
ì
Computer Networking
COMP 177 | Fall 2020 | University of the Pacific | Jeff Shafer

HTTP/3
(also: HTTP/2, SPDY, QUIC)

ì

Fall 2020Computer Networking

2

HTTP/2 (and “Google SPDY”)

Timeline

ì HTTP/0.9 (not an RFC: https://www.w3.org/Protocols/HTTP/AsImplemented.html)
ì Initial version of HTTP — a simple client-server, request-response, telnet-friendly protocol
ì Request nature: single-line (method + path for requested document)
ì Methods supported: GET only
ì Response type: hypertext only
ì Connection nature: terminated immediately after the response
ì No HTTP headers (cannot transfer other content type files), No status/error codes, No URLs,

No versioning

Fall 2020Computer Networking

3

https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

Timeline

ì HTTP/1.0  – RFC 1945 (May 1996)
ì Browser-friendly protocol
ì Provided header fields including rich metadata about both request and response

(HTTP version number, status code, content type)
ì Response: not limited to hypertext (Content-Type header provided ability to

transmit files other than plain HTML files — e.g. scripts, stylesheets, media)
ì Methods supported: GET , HEAD , POST
ì Connection nature: terminated immediately after the response

Fall 2020Computer Networking

4

https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

Timeline

ì HTTP/1.1 – RFC 2068 (January 1997)
ì Performance optimizations and feature enhancements

ì Persistent and pipelined connections
ì Chunked transfers
ì Compression/decompression
ì Virtual hosting (a server with a single IP address hosting multiple domains)

ì Methods supported: GET , HEAD , POST , PUT , DELETE , TRACE , OPTIONS
ì Connection nature: long-lived

Fall 2020Computer Networking

5

https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

Fall 2020Computer Networking

6

Motivations

ì What’s wrong with HTTP/1.1?
ì Complicated specification
ì Many options / incomplete implementations
ì Performance limitations

ì Why does it take so long to load a web page?

7

Fall 2020Computer Networking

Fall 2020Computer Networking

8

https://httparchive.org/

https://httparchive.org/

Fall 2020Computer Networking

9

https://httparchive.org/reports/state-of-the-web

https://httparchive.org/reports/state-of-the-web

Fall 2020Computer Networking

10

https://httparchive.org/reports/state-of-the-web

https://httparchive.org/reports/state-of-the-web

Fall 2020Computer Networking

11

https://httparchive.org/reports/state-of-the-web

https://httparchive.org/reports/state-of-the-web

Performance

ì Many files (Median of ~75 in 2018)
ì Some files are large, some files are small

ì Many TCP sockets (Median of ~19 in 2018)
ì More than one file per socket
ì Resource penalty + time penalty to just open yet more

sockets

ì Problems
ì Latency between requests

ì HTTP Pipelining typically disabled by default
ì Head-of-line blocking

ì Multiple requests over same socket, large file blocks small file
ì Not solved by HTTP Pipelining

Fall 2020Computer Networking

12

HTTP Performance Hacks

ì Sprite Sheets

ì Instead of sending
many tiny images,
send one big image
and use JavaScript/CSS
to pull out the desired
pieces

ì Inefficient if only a few
pieces are needed

Fall 2020Computer Networking

13

HTTP Performance Hacks

ì Inlining
ì Embed data inside

the CSS file instead
of as separate files

ì Concatenation
ì Combine multiple JS

/ CSS files into
megafiles before
sending to client

Fall 2020Computer Networking

14

.icon1 {
background:

url(data:image/png;base64,<data>)
no-repeat;
}

.icon2 {
background:

url(data:image/png;base64,<data>)
no-repeat;
}

HTTP Hacks

ì Domain Sharding

ì Avoid per-host limits
on # of connections by
spreading website
across many
“separate” hostnames

ì How does the browser
(or OS) prioritize these
connections?

Fall 2020Computer Networking

15

Timeline

ì IETF HTTPbis working group
ì Formed in 2007
ì Finalized HTTP/2 – RFC 7540 (May 2015)
ì Finalize HPACK – RFC 7541 (May 2015)
ì Heavily derived from Google SPDY work
ì https://http2.github.io/

ì Google SPDY
ì Released in Chrome in 2010
ì Withdrawn in Chrome in 2016

Fall 2020Computer Networking

16

https://http2.github.io/

HTTP/2

ì Make the web faster and eliminate the design hacks

ì Maintain high-level compatibility with HTTP/1.1
ì Methods, status codes, URIs, …
ì No changes to web pages, web apps, …

ì Reduce Latency -> Reduce Page Load Times
ì Compress headers
ì Server Push

ì Upcoming removal from Chrome – now considered more efficient for client to request resources it needs
after checking the local cache:
https://groups.google.com/a/chromium.org/g/blink-dev/c/K3rYLvmQUBY/m/vOWBKZGoAQAJ?pli=1

ì No head-of-line blocking (not fully successful here…)

ì Request pipelining
ì Request multiplexing over single connection

Fall 2020Computer Networking

17

https://groups.google.com/a/chromium.org/g/blink-dev/c/K3rYLvmQUBY/m/vOWBKZGoAQAJ?pli=1

Fall 2020Computer Networking

18

HTTP/2 uses
binary format

HTTP/2 Binary

ì Advantages of Binary
ì Simplifies parsing (Case? Line endings?

Whitespace?)
ì Compact representation
ì Simplifies multiplexing and prioritization
ì Impact: Reduces latency, improves throughput

ì Disadvantages of Binary
ì Can’t fire up Telnet to port 80 and demonstrate

HTTP any more
(couldn’t do that with HTTPS anyway…)

Fall 2020Computer Networking

19

HTTP/2 Protocol

Fall 2020Computer Networking

20

https://developers.google.com/web/fundamentals/performance/http2/

https://developers.google.com/web/fundamentals/performance/http2/

HTTP/2 Protocol

ì Stream = Bidirectional flow of data
ì Streams can carry 1 or more messages
ì Binary format allows multiple streams to exist over

single TCP connection

ì Message = Collection of frames that, combined,
form a request or response message

ì Frame = Fundamental unit of communication
ì Note that these are frames inside the TCP

connection, not Ethernet frames…

Fall 2020Computer Networking

21

HTTP/2 Protocol

Fall 2020Computer Networking

22

https://developers.google.com/web/fundamentals/performance/http2/

https://developers.google.com/web/fundamentals/performance/http2/

HTTP/2 Protocol

Frame Format
ì Length

ì Type

ì Flags

ì Stream Identifier

ì Payload

Frame Types
ì DATA

ì HEADERS

ì PRIORITY

ì PUSH_PROMISE
ì Server push

ì WINDOW_UPDATE
ì Flow control

ì (10 frame types in total)

Fall 2020Computer Networking

23

HTTP/2 Multiplexing

Fall 2020Computer Networking

24

https://developers.google.com/web/fundamentals/performance/http2/

ì Interleave multiple requests / responses without head-of-line blocking
ì Ability for client or server to prioritize frames

ì Single TCP connection to each “origin” (host)
ì Connection overhead and initial latency (especially TLS) is amortized over multiple file transfers
ì More efficient than opening multiple connections

https://developers.google.com/web/fundamentals/performance/http2/

HTTP/2 Compression

ì HPACK Header Compression (RFC 7541)

ì Fields can be encoded with static Huffman
code
ì Reduces transfer size

ì Client and server maintain list of previously-
seen fields
ì No need to re-transmit duplicate values

(refer to them by index number)

ì Operates with bounded memory requirements
(i.e. embedded systems)

ì Resistant to security flaws
(e.g. CRIME – Compression Ratio Info-leak
Made Easy)
ì Steal HTTP cookies from TLS connection by

observing impact of random payloads on
compressed ciphertext length

Fall 2020Computer Networking

25

https://developers.google.com/web/fundamentals/performance/http2/

https://developers.google.com/web/fundamentals/performance/http2/

HTTP/2 Compression

ì Is header compression worth the code?

ì Typical page
ì ~75 assets
ì ~1400 bytes per request (referrer tag, cookies, …)

ì 7-8 round trips just to transmit requests

ì Limited by TCP slow start congestion control
ì Can only have a few outstanding packets until ACKs begin

returning

ì Benefits increase the greater your network latency
ì Mobile LTE latency: 100+ ms (best case)

Fall 2020Computer Networking

26

HTTP/2 Security

ì HTTP/2 standard (RFC 7540) supports unencrypted
connections

ì Subject of much debate! (Should encryption be
mandatory?)
ì Pros:

ì Security security security
ì Prevents tampering from annoying middleboxes

assuming anything over port 80 is plain HTTP/1.1
ì Cons:

ì Not all content has to be encrypted
ì Performance / latency / etc…

Fall 2020Computer Networking

28

HTTP/2 Security

ì HTTP/2 standard (RFC 7540) supports unencrypted
connections
ì Client starts with HTTP/1.1 and sends header:

Upgrade: h2c
ì Server responds with HTTP 101 Switching

Protocol status code
ì Rare in wild! (curl?)

ì Major browser implementations (Firefox, Chrome,
Safari, etc…) only support HTTP/2 over TLS connections
ì Consistent with overall design philosophy of HTTPS

everywhere: New features only enabled over HTTPS

Fall 2020Computer Networking

29

HTTP/2 Protocol

ì How to “enable” HTTP/2?

ì Application Layer Protocol Negotiation
(ALPN) – RFC 7301
ì Part of TLS handshake
ì Client provides server with list of protocols it

supports
ì Server picks one it prefers
ì Performance optimization that avoids additional

roundtrip of starting with HTTP/1.1 and upgrading to
HTTP/2

Fall 2020Computer Networking

30

HTTP/2 Adoption

ì Widespread support!

ì Web browsers
ì Chrome, Safari, Firefox, Edge, …

ì Web servers
ì Apache, nginx, IIS, …

ì Content delivery networks
ì Akami, Azure, Cloudflare, AWS CloudFront, …

Fall 2020Computer Networking

31

Fall 2020Computer Networking

32

https://httparchive.org/reports/state-of-the-web

https://httparchive.org/reports/state-of-the-web

ì
HTTP/3 (and “Google QUIC”)

Fall 2020Computer Networking

33

Fall 2020Computer Networking

34

It’s a Google thing….

(Originally)

Google Engineering Motivations

ì Goal: Decrease end-user latency on web
ì To increase user engagement…
ì So they see more ads…

ì Approaches
ì Expand Google’s content delivery network to be

physically closer to audience
ì Fewer network hops, fewer wire delays

ì Develop and optimize web browser (Chrome)
ì Update HTTP protocol (HTTP/2)

Fall 2020Computer Networking

35

Google Engineering Motivations

ì HTTP/2 (based on Google SPDY)

ì Decrease end-user latency via
ì Compressing HTTP headers (fewer bits)
ì Pipelining requests
ì Multiplexing many HTTP requests onto single TCP

connection
ì Allowing server to push anticipated content to users

Fall 2020Computer Networking

36

Fall 2020Computer Networking

37

https://www.nanog.org/sites/default/files/meetings/NANOG64/1051/20150603_Rogan_Quic_Next_Generation_v1.pdf

What about this part of the stack?

https://www.nanog.org/sites/default/files/meetings/NANOG64/1051/20150603_Rogan_Quic_Next_Generation_v1.pdf

Google Engineering Motivations

ì Problems demonstrated in HTTP/2 testing
ì TCP is in-order delivery protocol

ì All packets are precious!
ì Head-of-Line problem: Loss of a single packet prevents

delivery of all behind it until (slow) retransmission occurs
ì If multiple streams are being sent through single TCP

connection, all are delayed

ì Can we do better?
ì Challenge: TCP is baked into the operating system kernel

(Windows, OS X, Linux) – Difficult for even Google to
modify

Fall 2020Computer Networking

38

Transmission Control Protocol (TCP)

ì TCP is connection-oriented
ì 3-way handshake used for connection setup

ì TCP provides a stream-of-bytes service

ì TCP is reliable
ì Acknowledgements indicate delivery of data
ì Checksums are used to detect corrupted data
ì Sequence numbers detect missing, or mis-sequenced data
ì Corrupted data is retransmitted after a timeout
ì Mis-sequenced data is re-sequenced
ì (Window-based) Flow control prevents over-run of receiver

ì TCP uses congestion control to share network capacity among users

39

Fall 2020Computer Networking

QUIC Overview

ì Quick UDP Internet Connections
ì Roughly, TCP+TLS+HTTP/2 on top of UDP

ì Design Goals
ì Provide multiplexed connections between two hosts

(without head-of-line blocking)
ì Provide security (equivalent to TLS) – always encrypted
ì Reduce connection establishment latency
ì Improve congestion control
ì Provide bandwidth estimation to applications to avoid

congestion
ì “Innovate” at the userspace

(not constrained by OS kernel, legacy clients, middleboxes)

Fall 2020Computer Networking

40

User Datagram Protocol (UDP)

ì UDP is a connectionless datagram service
ì There is no connection establishment: packets may show up at any

time

ì UDP packets are self-contained

ì UDP is unreliable
ì No acknowledgements to indicate delivery of data
ì Checksums cover the header, and only optionally cover the data
ì Contains no mechanism to detect missing or mis-sequenced packets
ì No mechanism for automatic retransmission
ì No mechanism for flow control or congestion control (sender can

overrun receiver or network)

41

Fall 2020Computer Networking

Traditional Architecture

Fall 2020Computer Networking

42

802.3 / 802.11
Ethernet / WiFi

IP

TCP

HTTP
Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer Bits on a Wire

O
pe

ra
tin

g
Sy

st
em

HTTP/1.1 on top of TCP
Multiple connections to same server (for parallelism) require multiple TCP sockets

TLS

QUIC Architecture

Fall 2020Computer Networking

43

802.3 / 802.11
Ethernet / WiFi

IP

UDP

HTTP/2 API

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer Bits on a Wire

O
pe

ra
tin

g
Sy

st
em

HTTP/2 on top of QUIC
Single UDP stream presented to operating system (multiplexed)

QUIC

QUIC vs TCP

ì QUIC uses server UDP port 443 instead of TCP 443

ì QUIC is fully encrypted by default
ì Except for flags, connection ID, and sequence number
ì Avoids network ossification by “helpful” network operators

and middleware boxes

ì QUIC retransmits data with new sequence numbers and re-
encrypts them
ì Improves loss recovery and RTT measurement

ì QUIC has no head of line blocking
ì Only the stream with the missing packet is blocked
ì All other streams can continue

Fall 2020Computer Networking

44

TCP 3-Way Handshake

Fall 2020Computer Networking

45

1

2

3

Fall 2020Computer Networking

46

TLS
Handshake

1

2

3

4

QUIC vs TCP

Fall 2020Computer Networking

47

https://peering.google.com/#/learn-more/quic

https://peering.google.com/

QUIC Zero RTT Connections

ì QUIC Connection Setup
ì 0 round-trips to a known server (common)
ì 1 round-trip if crypto keys are not new
ì 2 round-trips if QUIC version negotiation needed
ì After setup, HTTP requests/responses flow over

connection

ì QUIC inspired TLS 1.3 Zero RTT handshake

Fall 2020Computer Networking

48

https://datatracker.ietf.org/meeting/98/materials/slides-98-edu-sessf-quic-tutorial-00.pdf

https://datatracker.ietf.org/meeting/98/materials/slides-98-edu-sessf-quic-tutorial-00.pdf

QUIC Congestion Control

ì QUIC builds on decades of experience with TCP

ì Incorporates TCP best practices
ì TCP Cubic - fair with TCP FACK, TLP, F-RTO, Early

Retransmit...

ì Adds signaling improvements that can’t be done to
TCP
ì Retransmission uses a new sequence number
ì Avoid ambiguity about which packets have been

received

Fall 2020Computer Networking

49

Mobile

ì QUIC better supports mobile clients
ì Handing off between WiFi and cell network
ì Switching apparent IP addresses

ì QUIC token allows a client to continue with an
established connection even if the IP address
changes

Fall 2020Computer Networking

50

Performance

ì Strong network connection?
ì 3% latency improvement

ì Weak network connection?
(99% percentile of connections to Google search)
ì Reduced page loading time by 1 second
ì Strong benefit over TCP on marginal internet connections

(third world/emerging markets, high latency satellite
Internet, lousy mobile devices over weak WiFi, etc…)

ì YouTube
ì 30% fewer rebuffers (video pauses)

Fall 2020Computer Networking

51

Standardization as HTTP/3

ì Internet Engineering Task Force (IETF)
Working Group formed in 2016 - https://quicwg.org/
ì Draft HTTP/3 standard published November 21st, 2020

ì Not just adopting Google QUIC
ì Google’s QUIC was an experiment, tested on a large scale,

yielding valuable data
ì Replacing “Google crypto” with TLS 1.3
ì Standardizing APIs
ì New packet format (long headers and short headers)

Fall 2020Computer Networking

52

https://quicwg.org/

HTTP/3 Adoption

ì Under Development

ì Web browsers
ì Chrome (79+), Safari (14+), Firefox (72+), Edge (Canary build+)
ì Typically disabled by default

ì Web servers & content delivery networks
ì “Experimental / technology preview stage” (CloudFlare is production…)

ì Enabled at Facebook
ì “More than 75 percent of our internet traffic uses QUIC and HTTP/3”

ì Facebook App and Instagram App, not website
ì https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-

bringing-quic-to-billions/

ì Enabled at Google

Fall 2020Computer Networking

53

https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/

