

Computer Network Security

COMP 178 | Spring 2025 | University of the Pacific | Jeff Shafer

Computer Networking (Recap)

- Local Area Networks
- MAC Addresses
- IP Addresses (IPv4 and IPv6)
- Switches vs Routers
- Protocols: ARP, ICMP, DHCP
- Sockets
- TCP vs UDP
- Wireshark

COMP 177, in 45 minutes?

Dive Right In!

Computer Network Security

Local Area Networks (LANs)

- Physically connected devices that can communicate with each other "directly"
 - All computers in your home?
 - All computers in your office building? (Or floor? Or room?)
- Devices in a LAN use *physical addresses* (property of the hardware) to reach each other
 - MAC Address ("Media Access Controller")
 - **48** bits, 6 groups of 2 hex digits
 - **7** Example: **08**:**00**:**27**:**A8**:**69**:**6C**

Network Devices: Switches

- Switches are used to physically interconnect multiple nodes within a LAN
- Packets include the physical addresses of both the sender and the recipient that resides in the LAN
- Switches use these addresses to *learn the location* of devices in the LAN and send the received packet to that recipient
- Ethernet Switches use Ethernet (MAC) Addresses

Network Devices: Switches

Switches *learn the location of connected devices* and *forward* a packet towards the destination

Internet Protocol (IP)

- Ethernet is not scalable for <u>global</u> communication
- Internet Protocol (IP) is used to join multiple LANs together into a larger (global) network
- ↗ IP provides for
 - Universal addressing of nodes using IP addresses
 - **Routing** of packets using *routing protocols*

IP Addresses

- An IP address consists of two parts:
 - Network part (prefix)
 - Host (interface) part (remainder)

- ↗ The size of the prefix can vary!
 - **7** The network part is assigned by the *ISP*
 - The host part is usually configured by the *network* administrator

Multiple Addresses

- Sending a packet from one host to another?
 - 4 addresses in play
- Sender
 - Source IP address (e.g., 50.60.70.80)
 - ✓ Source MAC address (e.g., 08:00:27:A8:69:6C)
- Receiver
 - Destination IP address (e.g., 135.80.13.96)
 - Destination MAC address (e.g., 25:00:88:C3:22:75)

Private IP Addresses

- 32-bit address space for IPv4 is not enough for today's Internet (2³² ~ 4billion addresses)
- Many of the IP addresses are for internal / private use
 - The address for a corporate file server
 - The address of each interfaces of an internal router
 - The address of the PCs and laptops handed to employees

- Private IP addresses can be used arbitrary number of times in different networks
- Public routers (e.g., ISP's) cannot forward packets with a destination address in the private ranges
- Private IP address blocks
 - 7 10.0.0/8
 - ▶ 172.16.0.0/12
 - ▶ 192.168.0.0/16

Network Address Translation (NAT)

- Network Address Translation (NAT) is a capability of routers that enables multiplexing large number of individual hosts behind a single IPv4 public address
- Benefits of NAT
 - Conserves limited address space of IPv4
 - **7** Enables a form of *firewall-based security* in LANs
 - Internal devices can *initiate* connections to external devices, but not vice versa

The WhatIsMyIP.com site (and similar) will only see the public IP of your NAT (gateway), not the private IP of your internal device.

> Sometimes this is what you want. Other times it is not.

Network Address Translation (NAT)

- NAT can also be used within a single computer system
- Common example?Running multiple virtual machines
- Your computer has the IP address assigned by the network
 - Your virtual machines have NAT'ed IP addresses assigned by VMware/VirtualBox
 - ✓ VMs are only accessible *from within* your computer

Private IP Addresses

http://xkcd.com/742/

IP Versions

Version	Description
0-3	Unused: Development versions of IP
4	Current network-layer protocol
5	Unused: Experimental stream protocol – ST
6	New network-layer protocol (1996)
7-9	Unused: Experimental protocols – TP/IX, PIP, TUBA
10-15	Not allocated

Why Replace IPv₄?

- **The problem**
 - ↗ IPv4 has ~4.3 billion addresses
 - ➤ World has ~6.6 billion people!
 - How many internet-capable devices per person?
- ↗ IP address exhaustion
 - Internet will not "collapse", but new devices / networks will not be able to join^(*)

Comparison – IPv4 vs IPv6

	IPv4	IPv6			
Deployed	1981 [RFC 791]	1999 [RFC 2460 , 8200]			
Address Size	32-bit number	128-bit number			
Address Format	Dotted Decimal Notation: 192.149.252.76	Hexadecimal Notation: 3FFE:F200:0234:AB00: 0123:4567:8901:ABCD			
Prefix Notation	192.149.0.0/24	3FFE:F200:0234::/48			
Number of Addresses	2 ³² = ~4,294,967,296 (~4 billion)	2 ¹²⁸ = ~340,282,366, 920,938,463,463,374, 607,431,768,211,456			

<u>https://biotech.law.lsu.edu/blog/ipv4_ipv6.pdf</u> (ARIN Fact Sheet)

Computer Network Security

Network Devices: Routers

- **Routers** are used to interconnect multiple LANs to each other
- Packets include the logical address of the recipient that resides in a potentially remote LAN
- Routers use this address to forward the received packet toward the recipient
- ↗ IP Routers use IP Addresses
 - **7** Compare this to switches, which use MAC addresses

Network Devices: Routers

Protocols

A protocol is a set of guidelines according to which two entities communicate

A networking protocol is a set of guidelines according to which two devices communicate with each other through the network

Example Protocols – Low Level

Protocol	Purpose
Ethernet	Wired communication across local area network
WiFi	Wireless communication across local area network
Address Resolution Protocol (ARP)	Obtaining MAC address from an IP address
Internet Control Message Protocol (ICMP)	Diagnostic and error reporting messages
Transmission Control Protocol (TCP)	<i>Reliable</i> transmission of <u>stream</u> data from one host to another
User Datagram Protocol (UDP)	Unreliable transmission of <u>packet</u> data from one host to another

Example Protocols – Application Level

Protocol	Purpose
Domain Name System (DNS)	Obtaining an IP address given a hostname
Dynamic Host Configuration Protocol (DHCP)	Host can obtain its IP address, subnet, and next-hop router dynamically
Hyper Text Transport Protocol (HTTP /HTTPS)	Communication between web browsers and web servers
Secure Shell (SSH)	Encrypted command line and file transfers with a remote system

Network Protocols

- Protocols need to be standardized for interoperability
- Two major sources for networking protocol specifications:
 - **"Request For Comments"** documents (**RFCs**) administered by Internet Engineering Task Force (IETF)
 - Freely available at ietf.org
 - Institute of Electrical and Electronics Engineers (IEEE) standards
 - Accessible to members (\$\$)
 - Examples: 802.3 (Ethernet), 802.11 (WiFi)

Protocol Packets

- Each protocol defines the structure (syntax) of the packets that need to be communicated
- Different protocols have different packet structure
- Generally, a packet may consist of the following components:
 - Packet header
 - Packet body (payload)
 - Packet trailer

Example Packet – Ethernet

- Ethernet header has three fields:
 - Dest. MAC address (48 bits) physical addr. of NIC in receiving host
 - Source MAC address (48 bits) physical addr. of NIC in sending host
 - Type (16 bits) stores the upper layer protocol, i.e., the protocol used in the Ethernet payload
 - ↗ IPv4: 0x0800 IPv6: 0x86DD ARP: 0x0806

Address Resolution Protocol

- Find link layer address given a network layer address
 - ➔ What is the Ethernet address for a given IP address?
- Every IP node (hosts <u>and</u> routers) has an ARP table
 - Mapping from IP to Ethernet addresses on their LAN
 - May be incomplete
 - Can include both static and dynamic entries

Dynamic ARP Entries

- Systems "discover" IP → Ethernet address mappings, as needed
- Each entry has an IP address, an Ethernet address, and a timeout (typically around 1 minute)
- ARP messages are broadcast on the LAN to discover mappings
 - All computers on the network receive the ARP requests
- **Hosts** learn IP \rightarrow Ethernet address mappings
 - ARP responses are stored in ARP tables
 - ARP requests are stored in ARP tables (whether the host is the target or not!)

Internet Control Message Protocol

- One of the core protocols in the Internet
- Primarily used to communicate errors among routers and hosts
 - ↗ IP datagram errors
 - Communicate routing information/errors
 - Communicate diagnostics
- Not (typically) used by applications
 - Applications communicate application-level errors using higher level protocols
 - Ping and traceroute are the exceptions

Example Application - Ping

- Purpose: Does the hostname exist? Is the target up? Is the network working?
- Usage: ping [hostname/IP]

```
<u>-</u>
                                                     shafer@kali: ~
File Actions Edit View Help
 —(shafer⊛kali)-[~]
└─$ ping cyberlab.pacific.edu
PING cyberlab.pacific.edu (54.148.163.48) 56(84) bytes of data.
64 bytes from ec2-54-148-163-48.us-west-2.compute.amazonaws.com (54.148.163.48): icmp_seq=1 ttl=128 time=57.2 ms
64 bytes from ec2-54-148-163-48.us-west-2.compute.amazonaws.com (54.148.163.48): icmp seg=2 ttl=128 time=57.0 ms
64 bytes from ec2-54-148-163-48.us-west-2.compute.amazonaws.com (54.148.163.48): icmp seq=3 ttl=128 time=56.5 ms
^C
— cyberlab.pacific.edu ping statistics —
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
                                                                Shows hostname->IP address mapping
rtt min/avg/max/mdev = 56.511/56.933/57.243/0.309 ms
 —(shafer⊛kali)-[~]
-$
                                                                Shows if response received
                                                                Shows time (in ms) of response
                                                                Shows summary after CTRL-C to stop
   Computer Network Security
```

Network Configuration

- How does a host get its network interface configured?

 - Network mask
 - Default gateway
 - DNS servers
 - 7 ...

Dynamic Host Configuration Protocol (DHCP)

- Goals of DHCP
 - Plug and play!
 - Allow host to dynamically obtain its IP address from network server when it joins network
 - Allow host to renew its lease on in-use address
 - Allow reuse of addresses (if you disconnect your host, someone else can use that address)

Example Application - IP

Purpose: What is my IP address?

↗ Usage: ip addr

۴.	shafer@kali: ~
File	Actions Edit View Help
_ \$	(shafer⊛kali)-[~] ip addr
1:	<pre>lo: <loopback,up,lower_up> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo</loopback,up,lower_up></pre>
	valid_lft forever preferred_lft forever
	inet6 ::1/128 scope host
-	valid_lft forever preferred_lft forever
2:	eth0: <broadcast,multicast,up,lower_up> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000</broadcast,multicast,up,lower_up>
	inet 172.16.196.205/24 brd 172.16.196.255 scope global dynamic nonrefixroute eth0
	valid lft 1574sec preferred lft 1574sec
	inet6 fe80::20c:29ff:fe8e:2f3/64 scope link nop
	valid_lft forever preferred_lft forever Two interfaces shown!
	 "lo" (local loopback) with address 127.0.0.1
	• "eth0" with address 172.16.196.205

Domain Name System (DNS)

- Global distributed database
- Primary goal: Convert hostname (engineering.pacific.edu) to IP address
 - .edu is top-level domain
 - ↗ "pacific" belongs to .edu
 - "engineering" belongs to "pacific"

Example Application - Dig

Usage: dig [hostname] 7

...

F				shafer@kali: ~		
File Actions Edit View I	Help					
<pre>(shafer⊛ kali)-[^ _\$ dig pacific.edu</pre>	•]					
; ≪≫ DiG 9.17.21-1 ;; global options: 4 ;; Got answer: ;; —≫HEADER≪— opco ;; flags: qr rd ra;	l-Debian < ⊦cmd ode: QUERY QUERY: 1,	<>> paci , status ANSWER:	fic.edu : NOERR(3, AUTH	DR, id: 63273 HORITY: 0, ADDITIONAL:	1	
<pre>;; OPT PSEUDOSECTION ; EDNS: version: 0, ;; QUESTION SECTION:</pre>	N: flags:; M :	BZ: 0×00	05, udp	: 4096		
;pacific.edu.		IN	А			
;; ANSWER SECTION:						
pacific.edu.	5	IN	Α	52.89.246.166	Shows hostname->IP address mapping	σ
pacific.edu.	5	IN	Α	35.80.198.240		0
pacific.edu. Kalilinux	5	IN	Α	34.210.246.46	(Multiple mappings in this example)	
;; Query time: 4 mse ;; SERVER: 172.16.19 ;; WHEN: Thu Jan 06 :: MSG SIZE rcvd: 8	ec 96.2#53(17 20:41:08 38	2.16.196 PST 2022	.2) (UDI	»)		

Internet Transport Protocols

TCP Service

- Connection-oriented
 - Setup required between client and server processes
- Reliable transport between sending and receiving process
- - Sender won't overwhelm receiver
- Congestion control
 - Throttle sender when network overloaded
- Does not provide
 - Timing, minimum throughput guarantees, security

UDP Service

- Unreliable data transfer between sending and receiving process
- Does not provide
 - Connection setup
 - Reliability
 - Flow control
 - Congestion control
 - Timing
 - Throughput guarantee
 - Security

Why bother with UDP then?

Application-Layer Protocol

- Sockets just allow us to send raw messages between processes on different hosts
 - **7** Transport service takes care of moving the data
- What exactly is sent is up to the application
 - An application-layer protocol

Wireshark

- **To** *understand how protocols* work, it is helpful to
 - Observe the sequence of packets communicated between network nodes
 - Study the packet details and how protocols work in practice
 - Cause the protocol to do a specific action and check out the result
- Wireshark is a free tool that provides such services
 - Supports all major operating systems

Reading & Parsing Packets

- Wireshark can capture a packet and parse it into
 - Different protocols headers
 - Different fields in each protocol header
 - Image: meta-data about the fields
 - This does not appear directly in the packet header but is based on Wireshark analysis of this packet or even a sequence of packets

Reading & Parsing Packets

Wireshark Packet Capture (Kali)

- Wireshark is pre-installed in Kali
- Configure so non-root users have permission to capture packets (insert your Linux username into the second command)
 - \$ sudo dpkg-reconfigure wireshark-common \$ sudo usermod -a -G wireshark USERNAME
 - 🤊 💲 sudo reboot
- **Run Wireshark**
 - S wireshark &
- Next, interfaces are listed. Selecting one of the interfaces will start capturing packets on that interface.

	● II 📴 🔧 ↔ 🖨 🙆 🕸 🖾 🙃 🔁 ← 🖾 < 🖻 COMP 178 - Kali 2020.4										
3	= 🖻 🖿 🤜 🗾	🗾 🖿 shafer@kali:	~ 🥖 Capturing fro	om eth0	10:04 PM 🗖 🌒 单 😌	🔒 G					
🥖 File	Edit View Go C	apture Analyze Statistic	Capturing from eth0 Capturing f S Telephony Wireless	rom eth0 Tools He l r	P	_					
Δ	📕 🔬 🎯 土	🗎 🕅 🙆 २ २	→ ∩ ·← → ■	Ð	e 🛛 🖩 🛛 🗍 🗍 🗍 🗍						
📕 Ap	ply a display filter <ct< th=""><th>rt-/> DISD</th><th></th><th></th><th>C</th><th>2 🔹 +</th></ct<>	rt-/> DISD			C	2 🔹 +					
No.	Time	Source	Destination	Protocol	Length Info						
	1 0 00000000	170 10 100 0									
	10.000000000	1/2.16.196.2	172.16.196.1	DNS	95 Standard query 0xb069 A co	ntent-s					
	2 0.000291558	172.16.196.2 172.16.196.2	172.16.196.1 172.16.196.1	DNS DNS	95 Standard query 0xb069 A co 95 Standard query 0x2799 AAAA	ntent-s conten					
	2 0.000291558 3 0.045824800	172.16.196.2 172.16.196.2 172.16.196.1	172.16.196.1 172.16.196.1 172.16.196.2	DNS DNS DNS	95 Standard query 0xb069 A co 95 Standard query 0x2799 AAAA 359 Standard query response 0x	conten 2799 AA					
-	2 0.000291558 3 0.045824800 4 0.047071615	172.16.196.2 172.16.196.2 172.16.196.1 172.16.196.1	172.16.196.1 172.16.196.1 172.16.196.2 172.16.196.2	DNS DNS DNS DNS	95 Standard query 0xb069 A co 95 Standard query 0x2799 AAAA 359 Standard query response 0x 199 Standard query response 0x	ntent-s conten 2799 AA b069 A					
•	2 0.000291558 3 0.045824800 4 0.047071615 5 0.048357422	172.16.196.2 172.16.196.2 172.16.196.1 172.16.196.1 172.16.196.2	172.16.196.1 172.16.196.1 172.16.196.2 172.16.196.2 65.8.168.103	DNS DNS DNS DNS TCP	95 Standard query 0xb069 A co 95 Standard query 0x2799 AAAA 359 Standard query response 0x 199 Standard query response 0x 74 3000 442 YN	ntent-s conten 2799 AA b069 A n=64240					
•	2 0.000291558 3 0.045824800 4 0.047071615 5 0.048357422 6 0.077788502	172.16.196.2 172.16.196.2 172.16.196.1 172.16.196.1 172.16.196.2 65.8.168.103	172.16.196.1 172.16.196.1 172.16.196.2 172.16.196.2 65.8.168.103 172.16.196.2	DNS DNS DNS DNS TCP TCP	95 Standard query 0xb069 A co 95 Standard query 0x2799 AAAA 359 Standard query response 0x 199 Standard query response 0x 74 Description 74 Description	ntent-s conten 2799 AA b069 A n=64240 =0 Ack=					
-	2 0.000291558 3 0.045824800 4 0.047071615 5 0.048357422 6 0.077788502 7 0.077816174	172.16.196.2 172.16.196.2 172.16.196.1 172.16.196.1 172.16.196.2 65.8.168.103 172.16.196.2	172.16.196.1 172.16.196.1 172.16.196.2 172.16.196.2 65.8.168.103 172.16.196.2 65.8.168.103	DNS DNS DNS TCP TCP TCP	95 Standard query 0xb069 A co 95 Standard query 0x2799 AAAA 359 Standard query response 0x 199 Standard query response 0x 74 DCG0CLACE[TYN, IS] Seq 66 40000 → 443 [ACK] Seq=1 Ac	ntent-s conten 2799 AA b069 A n=64240 =0 Ack= k=1 Win					

Frame 1: 95 bytes on wire (760 bits), 95 bytes captured (760 bits) on interface eth0, id 0
 Ethernet II, Src: VMware_8e:02:f3 (00:0c:29:8e:02:f3), Dst: 7a:4f:43:c9:a7:64 (7a:4f:43:c9:a7:64)
 Internet Protocol Version 4, Src: 172.16.196.2, Dst: 172.16.196.1
 User Datagram Protocol, Src Port: 47126, Dst Port: 53
 Domain Name System (query)

Packet Details

0000	7a	4f	43	с9	a7	64	00	0C	29	8e	02	f3	08	00	45	00	z0C··d··)····E·
0010	00	51	d4	95	40	00	40	11	85	e1	ac	10	c4	02	ac	10	·Q··@·@·
0020	c4	01	b 8	16	00	35	00	Зd	e0	73	b0	69	01	00	00	01	••••5•= •s•i••••
0030	00	00	00	00	00	00	13	63	6f	6e	74	65	6e	74	2d	73	•••••c ontent-s
0040	69	67	6e	61	74	75	72	65	2d	32	03	63	64	6e	07	6d	ignature -2 cdn m
0050	6f	7a	69	6c	6c	61	03	6e	65	74	00	00	01	00	01		ozilla n et

eth0: <live capture in progress>

Deadlines

- Lab 1 VM Setup
 - Due Jan 21st at 11:59pm
- Lab 2 Reconnaissance
 - Due Jan 29th at 11:59pm

- TA TA
 - Vivek Kumar Maheshwari
 - SOECS Student Support Center
 - Hours TBD