


Computer Network Security
COMP 178 | Spring 2025 | University of the Pacific | Jeff Shafer

Cryptographic
Libraries
(And Lab 12!)

Spring 2025Computer Network Security

2

Let’s start using cryptography in our
programs!

Such as Lab 12…

Hybrid Cryptography

 Take message and encrypt with random symmetric
key

 Take symmetric key and encrypt with asymmetric
public key of recipient

 Security of asymmetric key exchange ✓

 Performance of symmetric encryption ✓

Spring 2025Computer Network Security

3

Spring 2025Computer Network Security

4

What library should we use to
accomplish this?

Hmmmn, let’s search for crypto library…

Spring 2025Computer Network Security

5

https://www.cryptopp.com/

How does this library look?

https://www.cryptopp.com/

Spring 2025Computer Network Security

6

https://www.cryptopp.com/

How does this library look?

https://www.cryptopp.com/

Spring 2025Computer Network Security

7

So many options!!

More options is good, right?

Library Primitives

 How to accomplish hybrid cryptography with a traditional (low-
level) library
 Choose algorithms and parameters, e.g. AES 256 bit, RSA 4096 bit

etc.

 Generate RSA key pair

 Generate random AES key and nonce

 Use AES key to encrypt data

 Hash encrypted data

 Read RSA private key from wire format

 Use key to sign hash

 Read recipient’s public key from wire format

 Use public key to encrypt AES key and signature

 Many parameters and options to select along the way!

Spring 2025Computer Network Security

8

“Crypto is Broken or How to Apply Secure Crypto as a Developer”
https://blog.codecentric.de/en/2014/03/crypto-broken-apply-secure-crypto-developer/

https://blog.codecentric.de/en/2014/03/crypto-broken-apply-secure-crypto-developer/

Developers 101

Spring 2025Computer Network Security

9

Answer:
It's a low-level crypto library that leaves avoidance of
virtually all the exploitable crypto mistakes as an
exercise for the programmer.

Question:
“What is wrong with mcrypt?”

From Hacker News thread on cryptography

https://paragonie.com/blog/2015/05/if-you-re-typing-word-mcrypt-into-your-code-you-re-doing-it-wrong

(One of several PHP libraries for encryption)

https://paragonie.com/blog/2015/05/if-you-re-typing-word-mcrypt-into-your-code-you-re-doing-it-wrong

Developers 101

Spring 2025Computer Network Security

10

You should never type A… E… S….
into your code anywhere!

And you should really never type
D…E…S… into your code

And you should think twice before
type M..D…5 or S..H..A… as well



NaCL – our Utopia?

Spring 2025Computer Network Security

11

Robert McCall, “The Prologue and the Promise”

NaCL

 Not Another Crypto Library (or “Salt”)

 https://nacl.cr.yp.to/

 Released by Daniel J. Bernstein (DJB) in
2011

 Mathematician and cryptographer

 Research professor at University of Illinois
at Chicago

 https://cr.yp.to/djb.html

 He’s like the “Richard Stallman” (GNU
Founder) of cryptography

Spring 2025Computer Network Security

12

https://nacl.cr.yp.to/
https://cr.yp.to/djb.html

Bernstein v. United States (1996)

Spring 2025Computer Network Security

13

While a graduate student at the University of California at Berkeley, Bernstein completed
the development of an encryption equation (an "algorithm") he calls "Snuffle." Bernstein
wishes to publish (a) the algorithm (b) a mathematical paper describing and explaining
the algorithm and (c) the "source code" for a computer program that incorporates the
algorithm. Bernstein also wishes to discuss these items at mathematical conferences,
college classrooms and other open public meetings. The Arms Export Control Act and the
International Traffic in Arms Regulations (the ITAR regulatory scheme) required Bernstein
to submit his ideas about cryptography to the government for review, to register as an
arms dealer, and to apply for and obtain from the government a license to publish his
ideas. Failure to do so would result in severe civil and criminal penalties. Bernstein
believes this is a violation of his First Amendment rights and has sued the government.

https://www.eff.org/cases/bernstein-v-us-dept-justice

https://www.eff.org/cases/bernstein-v-us-dept-justice

Bernstein v. United States (1996)

 Ruling by 9th Circuit Court of Appeals

Spring 2025Computer Network Security

14

Software source code is speech protected by the
First Amendment and government regulations
preventing its publication were unconstitutional

https://www.eff.org/deeplinks/2015/04/remembering-case-established-code-speech

“This court can find no meaningful difference between computer
language, particularly high-level languages as defined above, and
German or French....Like music and mathematical equations,
computer language is just that, language, and it communicates
information either to a computer or to those who can read it...”

-Judge Patel, April 15, 1996

https://www.eff.org/deeplinks/2015/04/remembering-case-established-code-speech

NaCL Properties

 Expert selection of default primitives

Spring 2025Computer Network Security

15

Typical cryptographic libraries force the programmer to specify choices
of cryptographic primitives: e.g., “sign this message with 4096-bit RSA
using PKCS #1 v2.0 with SHA-256.”

Most programmers using cryptographic libraries are not expert
cryptographic security evaluators. 

Often programmers pass the choice along to users—who usually
have even less information about the security of cryptographic
primitives. 

https://nacl.cr.yp.to/features.html

https://nacl.cr.yp.to/features.html

NaCL Properties

 High-level primitives instead of low-level operations
 Tiny number of functions!

 High-speed implementation

 Automatic CPU-specific tuning

 Resistant to side-channel timing attacks

 No data-dependent branches

 No data-dependent array indices

 No dynamic memory allocation

Spring 2025Computer Network Security

16

https://nacl.cr.yp.to/features.html

https://nacl.cr.yp.to/features.html

Challenges

 Implementation not portable/cross-platform

 Implementation is not a shared library

 Implementation difficult to package due to build
system and compilation requirements

 System designed as a research exercise, instead of for
programmers

Spring 2025Computer Network Security

17



Libsodium

Spring 2025Computer Network Security

18

Libsodium

 Cross-platform fork of NaCL with API bindings for
common programming languages beyond C/C++

 http://www.libsodium.org

 https://github.com/jedisct1/libsodium

 Uses same implementation of crypto primitives as
NaCL

 Passed security audit
 https://www.privateinternetaccess.com/blog/2017/

08/libsodium-audit-results/

Spring 2025Computer Network Security

19

http://www.libsodium.org/
https://github.com/jedisct1/libsodium
https://www.privateinternetaccess.com/blog/2017/08/libsodium-audit-results/
https://www.privateinternetaccess.com/blog/2017/08/libsodium-audit-results/

Libsodium Features

 Authenticated public-key encryption

 Authenticated shared-key encryption (symmetric)

 Hashing / keyed hashing

 Cryptographically secure PRNG

Spring 2025Computer Network Security

20

Libsodium Algorithm – Public Key

 Asymmetric encryption: Curve25519

 Elliptic curve Diffie-Hellman key agreement (X25519)

 Why?

 Not patent encumbered

 No “secret constants” that were “helpfully” suggested by
the NSA with no documentation on why they were selected

 Used where?

 https://ianix.com/pub/curve25519-deployment.html

 Libsodium, OpenSSL, LibreSSL, libssh, …

 Standard in TLS 1.3

 OpenSSH, iOS, Signal messenger, WhatsApp, WireGuard
VPN

Spring 2025Computer Network Security

21

https://ianix.com/pub/curve25519-deployment.html

Libsodium Algorithm – Secret Key

 Symmetric Encryption: Salsa20 stream cipher

 Not AES (Should we care?)

 Positive opinion (from DJB, author)
https://cr.yp.to/streamciphers/why.html

 Neutral opinion (from Matthew Green, cryptographer)
https://blog.cryptographyengineering.com/2012/10/0
9/so-you-want-to-use-alternative-cipher/

 Standardized in European eSTREAM cipher
competition

 Message Authentication: Poly1305 MAC

Spring 2025Computer Network Security

22

https://cr.yp.to/streamciphers/why.html
https://blog.cryptographyengineering.com/2012/10/09/so-you-want-to-use-alternative-cipher/
https://blog.cryptographyengineering.com/2012/10/09/so-you-want-to-use-alternative-cipher/

Libsodium Languages

 C (Native, API Provided)

 Bindings for other languages

 Python
 PyNaCL - https://github.com/pyca/pynacl

 LibNaCL - https://github.com/saltstack/libnacl
 Csodium – Not suggested (limited feature subset)

 Pysodium – Not suggested (only for Python 2.7)

 .NET, Go, Java, Ruby, Rust, Swift, …
 https://download.libsodium.org/doc/bindings_for_other

_languages/

Spring 2025Computer Network Security

23

https://github.com/pyca/pynacl
https://github.com/saltstack/libnacl
https://download.libsodium.org/doc/bindings_for_other_languages/
https://download.libsodium.org/doc/bindings_for_other_languages/

Installation Instructions

Spring 2025Computer Network Security

24

C:
$ sudo apt-get install build-essential

$ wget https://download.libsodium.org/libsodium/releases/LATEST.tar.gz

$ tar -xzf LATEST.tar.gz

$ cd libsodium-stable

$./configure

$ make && make check

Should see following printed after test suite runs: PASS: 70

$ sudo make install

Python:
$ sudo apt install python3 python3-pip

$ pip3 install --upgrade pip

$ pip3 install pynacl

$ pip3 install --upgrade pynacl # If needed

https://download.libsodium.org/libsodium/releases/LATEST.tar.gz



Lab 12

Spring 2025Computer Network Security

25

Spring 2025Computer Network Security

26

Your program must transmit to the cyberlab.pacific.edu:12001 server the
following payload in a “HTTP-like” format as an ASCII string:

CRYPTO 1.0 REQUEST\r\n
Name: Your Name\r\n
PublicKey: <Base16 string of your public key>\r\n
\r\n

After transmitting a packet to the server, your program must also receive a TCP reply
from the server with the following payload:

CRYPTO 1.0 REPLY\r\n
Name: Jeff Shafer\r\n
PublicKey: <Base16 string of Shafer's public key>\r\n
Ciphertext: <Base16 string of ciphertext>\r\n
\r\n

Spring 2025Computer Network Security

27

#!/usr/bin/env python3

import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((hostname, port))
msg = "Unicode string to send"
raw_bytes = bytes(msg, 'ascii’)
s.sendall(raw_bytes)
response = s.recv()
s.close()

https://docs.python.org/3/library/socket.html

World’s laziest Python socket program with absolutely no error
checking (exception handling)

try:
 # Send the string
 s.sendall(raw_bytes)
except socket.error as msg:
 print("Error: sendall() failed")
 print("Description: " + str(msg))
 sys.exit()

This is better exception handling…

https://docs.python.org/3/library/socket.html

Base16 Encoding

 Input: 4-bit value

 Output: ASCII digits 0-9 and letters A –F

 Can convert in Python using

 base64.b16encode()

 base64.16decode()

Spring 2025Computer Network Security

28

Binary values Printable Text
(for transport)

https://docs.python.org/3/library/base64.html

https://docs.python.org/3/library/base64.html

	Slide 1: Computer Network Security
	Slide 2
	Slide 3: Hybrid Cryptography
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Library Primitives
	Slide 9: Developers 101
	Slide 10: Developers 101
	Slide 11: NaCL – our Utopia?
	Slide 12: NaCL
	Slide 13: Bernstein v. United States (1996)
	Slide 14: Bernstein v. United States (1996)
	Slide 15: NaCL Properties
	Slide 16: NaCL Properties
	Slide 17: Challenges
	Slide 18: Libsodium
	Slide 19: Libsodium
	Slide 20: Libsodium Features
	Slide 21: Libsodium Algorithm – Public Key
	Slide 22: Libsodium Algorithm – Secret Key
	Slide 23: Libsodium Languages
	Slide 24: Installation Instructions
	Slide 25: Lab 12
	Slide 26
	Slide 27
	Slide 28: Base16 Encoding

