

Computer Network Security
COMP 178 | Spring 2025 | University of the Pacific | Jeff Shafer

Cryptography:
Hashes and Passwords

Cryptographic Hash Functions

Spring 2025Computer Network Security

2

Cryptographic Hash Functions

 Input: Message of arbitrary size

 Output: “Digest” (hashed output) of fixed size

Spring 2025Computer Network Security

3

Loreum ipsum 23sdfw83x8mjyacd6Hash Function

(message of arbitrary size) (digest of fixed size)

Cryptographic Hash Functions

 Design Goals

 Computing hash should be computationally cheap

 Reversing hash should be computationally
expensive (“impossible”) – One-way function

Spring 2025Computer Network Security

4

Loreum ipsum 23sdfw83x8mjyacd6Hash Function

(message of arbitrary size) (digest of fixed size)

Cryptographic Hash Functions

 Design Goals
 Changing the message a small amount should

produce a large change in the digest

 Each bit in digest has 50% chance of flipping

Spring 2025Computer Network Security

5

Loreum ipsum 4ddf71e68243fb48Hash Function

Loreum Ipsum ce9c25cef29a8ea2Hash Function

Cryptographic Hash Functions

 Design Goals

 It should be very (very very VERY) hard to find two
different messages that have the same digest

Spring 2025Computer Network Security

6

Cryptographic Hash Uses

 Security

 Digital signatures

 Message authentication

 General computing

 Detect duplicate files

 Detect file changes/corruption

 Index data in hash tables

Spring 2025Computer Network Security

7

Cryptographic Hash Functions

 MD5 – Don’t use!

 “Message Digest 5”

 Input → 128-bit digest

 SHA-1 – Don’t use!

 “Secure Hash Algorithm 1”

 Input → 160-bit digest

 Google, Apple, Microsoft, Mozilla retired support for SHA-
1 signed SSL/TSL certificates in 2016-2017

 Vulnerable to collision attacks

 Attackers have made fake SSL certificates

Spring 2025Computer Network Security

8

Spring 2025Computer Network Security

9

https://shattered.io/
February 2017

https://shattered.io/

Spring 2025Computer Network Security

10

Google produced two different PDFs with same SHA-1 hash as proof of danger
Required 9,223,372,036,854,775,808 SHA1 computations
110 years of Single-GPU computation (but Google has more than one GPU...)

https://shattered.io/
February 2017

https://shattered.io/

Cryptographic Hash Functions

 SHA-2 family – Safe (except for length extension)
 SHA-256 (256-bit digest, optimized for 32-bit CPUs)

 SHA-512 (512-bit digest, optimized for 64-bit CPUs)

 SHA-3 – Safe (including against length extension)
 NIST Hash function competition (2007-2012)

 51 entries round 1, 14 round 2, 5 finalists

 Winner: Keccak algorithm
 Efficient in hardware but slow in software

 SHA3-256, SHA3-512, …

 Blake2 – Safe
 Another SHA-3 finalist

Spring 2025Computer Network Security

11

Length Extension Attacks

 Older hash algorithms output their entire internal state
as the hash digest

 Attack: Pick up exactly where they left off!
(Reconstruct internal state from hash digest)

Spring 2025Computer Network Security

12

Plaintext Hash (md5, SHA-1, SHA-2)

FundsXfer:Account

123456:Amount:123

4ddf71e68243fb48ce9c25cef29a8ea2

FundsXfer:Account

123456:Amount:123000

Load hash function with state of
4ddf71e68243fb48ce9c25cef29a8ea2

Continue running hash function over extension
attack digits 000
New hash:
30c6ae0de5369c2637d5c541ef0095d8

Length Extension Attacks

 HashPump: A tool to exploit the hash length
extension attack in various hashing algorithms.

 Currently supported algorithms: MD5, SHA1,
SHA256, SHA512 (i.e. SHA2 variants)

 https://github.com/bwall/HashPump

 Real-world attacks require a bit of brute forcing
(trial and error) to reconstruct hash state but
nothing impossible

Spring 2025Computer Network Security

13

https://github.com/bwall/HashPump

Password Storage

Spring 2025Computer Network Security

14

Password Storage

Spring 2025Computer Network Security

15

We agree that it’s horrible to store
plaintext passwords in a database, yes?

 Database theft instantly gives attacker all user
passwords
 Attacker could be rogue system administrator…

 Humans re-use passwords across many sites

 Does a website password reset tool email you your
original password? RUN!!!

Password Storage

 Encrypting the entire database doesn’t help

 Attacker could easily steal encryption keys along
with database – keys must be in the system
somewhere

 Encrypting individual passwords is a similar
headache

 Where to store the keys?

 How to keep the keys safe?

 So many keys!!

Spring 2025Computer Network Security

16

Warning!

Spring 2025Computer Network Security

17

Warning: Cryptographic Hashes for
password storage are wrong!

Can hashes help us?

Password Storage

Spring 2025Computer Network Security

18

“Swordfish” 4ddf71e68243fb4Hash Function

alice@abc.com
password:

 Alice’s plaintext password can’t be instantly
reversed from the hash if database stolen

 But what if Bob has the same password? He will
have the same hash

Password Storage

 Humans choose terrible passwords:

 password, swordfish,
passw0rd, etc…

 There are only a few plausible hash
functions in widespread use

 Attackers can pre-compute hashes
for likely passwords (dictionary
words and permutations)

 Save in “rainbow table”

 Search for a quick match!

Spring 2025Computer Network Security

19

Password Lists

 Large lists of likely passwords are assembled by
attackers from prior password leaks (real-world
data)

 Free/cheap option for your downloading
convenience
 https://crackstation.net/buy-crackstation-wordlist-

password-cracking-dictionary.htm

 15GB uncompressed

 Starting guessing at “password123” instead of
“aaaaaaaa”

Spring 2025Computer Network Security

20

https://crackstation.net/buy-crackstation-wordlist-password-cracking-dictionary.htm
https://crackstation.net/buy-crackstation-wordlist-password-cracking-dictionary.htm

Password Storage

 Improvement: Don’t hash {password}
 Instead hash {salt | password}

 “Salt” is large (160 bit) cryptographically
random number appended/prepended to
password

 Best practice
 Unique salt per user, not per-system

 Store this in database along with hash

 Rainbow tables now worthless
 Would need a rainbow table for each

2160 salt values)

Spring 2025Computer Network Security

21

Spring 2025Computer Network Security

22

Password Storage

 Many systems use just a single salt, so an attacker
only needs to compute one rainbow table

 Per-user salts are still fundamentally broken, just
harder to crack

 Cryptographic hash functions are intended to be fast

 Attackers that steal your database also have your
salt. With GPUs they can brute-force all possible
passwords (following the password list and
permutations)

 Broken? Not instantly. But vulnerable? Yes

Spring 2025Computer Network Security

23

Password Storage

Spring 2025Computer Network Security

24

“Please stop hashing passwords”

https://blog.tjll.net/please-stop-hashing-passwords/

https://blog.tjll.net/please-stop-hashing-passwords/

Password Storage

 Password storage should use a
Key Derivation Function (KDF) instead

 It looks like a hash function, but has a
completely different design goal

 Design goals

 KDF: hard to compute

 Ideally, as slow as your users will tolerate without
switching to a competitor’s product!

 Cryptographic hash: Easy to compute

Spring 2025Computer Network Security

25

Key Derivation Functions

 Bcrypt – good
 Tunable time-hard – you can configure how much

CPU time it takes to calculate a hash key

 CPUs getting faster? Tune bcrypt to take more time!

 Scrypt – good

 Tunable time (CPU) and space (memory) hard

 GPUs brute-forcing is hampered due to memory
requirements

 Important: Still use salt with KDF algorithms

Spring 2025Computer Network Security

26

Key Derivation Functions

Spring 2025Computer Network Security

27

https://blog.tjll.net/please-stop-hashing-passwords/
(CORS policy requires changing JavaScript to load JSON

over HTTPS to get interactive graph to appear…)

Comparing hash functions by time to generate digest
md5, sha1, sha2, sha3, pbkdf2

How do you think bcrypt and
scrypt will compare?

https://blog.tjll.net/please-stop-hashing-passwords/

Key Derivation Functions

Spring 2025Computer Network Security

28

https://blog.tjll.net/please-stop-hashing-passwords/
(CORS policy requires changing JavaScript to load JSON

over HTTPS to get interactive graph to appear…)

Original hashes (md5, sha1, sha2, sha3, pbkdf2)
are not even visible at the bottom!

Y-axis (original): 0.00 – 0.25s
Y-axis (new): 0-600s

https://blog.tjll.net/please-stop-hashing-passwords/

Key Derivation Functions

 Ruby script to generate your own dataset

 https://gist.github.com/tylerjl/10802499

Spring 2025Computer Network Security

29

https://gist.github.com/tylerjl/10802499

	Slide 1: Computer Network Security
	Slide 2: Cryptographic Hash Functions
	Slide 3: Cryptographic Hash Functions
	Slide 4: Cryptographic Hash Functions
	Slide 5: Cryptographic Hash Functions
	Slide 6: Cryptographic Hash Functions
	Slide 7: Cryptographic Hash Uses
	Slide 8: Cryptographic Hash Functions
	Slide 9
	Slide 10
	Slide 11: Cryptographic Hash Functions
	Slide 12: Length Extension Attacks
	Slide 13: Length Extension Attacks
	Slide 14: Password Storage
	Slide 15: Password Storage
	Slide 16: Password Storage
	Slide 17: Warning!
	Slide 18: Password Storage
	Slide 19: Password Storage
	Slide 20: Password Lists
	Slide 21: Password Storage
	Slide 22
	Slide 23: Password Storage
	Slide 24: Password Storage
	Slide 25: Password Storage
	Slide 26: Key Derivation Functions
	Slide 27: Key Derivation Functions
	Slide 28: Key Derivation Functions
	Slide 29: Key Derivation Functions

