

Computer Network Security

COMP 178 | Spring 2025 | University of the Pacific | Jeff Shafer

Bonus Topic: Network Address Translation (NAT) & Slipstream Attacks

Upcoming Assignments

- **オ Lab 6 − Post Exploitation: Due Feb 26th**
- Lab 7 Password Testing: Due March 5th
- Video Presentation
 - **7** Due February 25th − TODAY!
 - Upload video and slides to separate Canvas assignments
- ✓ Video Presentation Peer Reviews <u>3 each</u>
 - Canvas will auto-assign on March 2nd (look in the same assignment where you uploaded the video)
 - **Due March 9**th

NAT and Slipstream Attacks

- Today's agenda
 - Network Address Translation (NAT)
 - Slipstream Attack v1
 - Slipstream Attack v2

Review: Private IPv₄ Addressing

- Not routable on public internet
 - No chance of conflict with a valid public IP
- Why do I want private addresses?
 - Not every printer / phone / IOT device / etc. needs to be publicly accessible from the Internet
 - Useful for local collections of computers not connected to Internet

Name	IP address range	Number of IPs
10.0.0/8	10.0.0.0 - 10.255.255.255	16,777,216
172.16.0.0/12	172.16.0.0 - 172.31.255.255	1,048,576
196.168.0.0/16	192.168.0.0 - 192.168.255.255	65,536

Review: TCP and UDP

Two common protocols nested <u>inside</u> IP packets

<u>TCP</u>

- Reliability guaranteed
- Connection-based
 - Stream of data between two endpoints
 - Must explicitly open and close

<u>UDP</u>

- Delivery not guaranteed
- No connections
 - Each packet is independent (like IP)

Each protocol uses <u>port numbers</u> to distinguish between independent data streams

Network Address Translation

- Translate / route packets between one IP address space and another
 - Commonly translates from private IP range to public IP range (but the concept can be generalized to two public address ranges)
- Accomplished by modifying packet header
 - Source address
 - Destination address
 - IP port number
 - ↗ IP / TCP / UDP checksums

Not every NAT technique modifies every field!

Network Address Translation

Network A

- Multiple computers trying to access network B
- Don't want to reveal network A's structure to network B

Network B

- Traffic from network A appears with addresses in Network B's space
- May be mapped as single or multiple addresses

Why Use Address Translation?

- Allows multiple hosts on private network to access public network through a single address
 - Overcomes policy problems
 (e.g. buying extra IPs from your ISP costs \$\$)
 - Overcomes IPv4 address shortages
- Disguises internal network structure
 - All requests appear to originate from NAT unit
 - Increases "security"
- Allows you to use entire 10.x.x.x private address space and remap to smaller public address range
 - Very convenient for clean network topology and simplified router forwarding tables

Types of Translation

- Terms are used interchangeably
- Network Address Translation (NAT)
 - Translates only the address fields, not ports
 - Every machine on network A gets a unique address on network B
- Port Address Translation (PAT)
 - Translates address and port numbers
 - Allows multiple machines on network A to share single IP address on network B
 - All requests appear to come from PAT unit

Network Address Translation Types

- One-to-One Mapping
 - Every internal IP gets a different external IP
- Static
 - Internal IP always mapped to same External IP
- Dynamic / Pooled
 - Internal IP is mapped to random external IP

NAT Mapping Table: Static or Dynamic

Internal IP	External IP
192.168.32.10	213.18.15.116
192.168.32.12	213.18.15.112
192.168.32.15	213.18.15.125

Not shown in Table: MAC Addresses!

NAT Mechanics – Outbound Packet

Ethernet Heade	er	IP Header				Data			
Dst MAC	Src MAC			IP Csum	Src IP	Dst IP		Payload	CRC

Before NAT (internal network)

В	А			IP Csum	PC 1	PC 2		Payload	CRC
---	---	--	--	---------	------	------	--	---------	-----

After NAT (external network)

X	С			IP Csum	NAT	PC 2		Payload	CRC
---	---	--	--	---------	-----	------	--	---------	-----

- Save internal IP and MAC to mapping table
- **Replace source IP and MAC with NAT unit**

Computer Network Security

Recalculate checksums (Ethernet CRC, IP header, TCP/UDP/... headers)

NAT Mechanics – Inbound Packet

Ethernet Heade	er	IP He	eader			Data	
Dst MAC	Src MAC	 	IP Csum	Src IP	Dst IP	 Payload	CRC

Before NAT (external network)

С	X			IP Csum	PC 2	NAT		Payload	CRC
---	---	--	--	---------	------	-----	--	---------	-----

After NAT (internal network)

А	В			IP Csum	PC 2	PC1		Payload	CRC
---	---	--	--	---------	------	-----	--	---------	-----

- Lookup Dst IP in mapping table. Only forward if match found
- Replace Dst IP and MAC with private address

Update checksums (CRC, IP, TCP/UDP/...)

NAT Mechanics – Inbound Packet

- What happens if a router sends a packet to the NAT unit, but no valid mapping exists for the destination IP?
 - Packet is dropped 7

Port Address Translation

IP Overloading

- Many internal IPs are mapped to one (or a few) external IPs
- TCP/UDP port number is also changed and used to identify unique connections between internal and external hosts
- Typically dynamic

NAT Mapping Table

Internal IP	Internal Port	External IP	External Port
192.168.32.10	1701	213.18.15.116	1501
192.168.32.12	1831	213.18.15.116	1502
192.168.32.15	1200	213.18.15.116	1503

Not shown in Table: MAC Addresses!

Clearing Mappings

- When should a mapping be removed from a NAT?

 - Dynamic NAT Only if the host is idle for a long time?
- When should a mapping be removed from a PAT?
 - **オ** TCP − Close of connection or reasonable timeout
 - Connection is framed by SYN and FIN packets
 - UDP Unable to determine close of "connection", so must use reasonable timeout instead

NAT/PAT – Protocol Challenges

- **PAT Fails**: Protocols that require incoming connections
 - Example: FTP Active Mode
 - Client sends request
 - Server attempts to open new connection back to client to send data
 - No entry in PAT table so connection is rejected
 - Example: SIP / RTP (VOIP telecommunication)
- NAT / PAT Fails: Protocols that carry IP address / port values in their payload
 - Example: IPsec (and other tunneling / VPN protocols)
 - NAT changes src/dst addresses in header but is unable to fix encrypted payload. Packet fails security check and is discarded because receiver detects (correctly) that the packet was altered in transit
- **NAT / PAT Fails**: Protocols that use checksums which include IP addresses
 - NAT only knows how to recalculate checksums for IP/TCP/UDP packets, not any new protocol that might be developed

Application-Level Gateway (ALG)

- Technique to avoid breaking common protocols
- NAT device runs multiple ALGs
 - Each ALG looks for a different protocol
 - Rewrites packet payload to fix problems
- Common ALG modules
 - **↗** FTP, SIP, H.323, RTSP, IPSec, etc...
- Not future proof
 - **7** Each ALG is a fix for a specific protocol
 - Need to upgrade NAT software as new applications are developed

Severs and PAT

- Is there a simple way to enable servers to function behind a PAT?
- Administrator can insert static mappings into mapping tables
 - e.g. All incoming TCP requests on port 80 should always be forwarded to IP A.B.C.D, port 80 (enables a web server)
- Must be configured in advance
- Doesn't scale well
 - What if I have two web servers behind my PAT?
 - What if I don't know the incoming port #?
- Can be automated via Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol
 - **7** This is designed for home use, not a corporate datacenter

Severs and NAT

- Do I need to do anything to get my servers behind NAT to work?
 - ↗ No IP address mapping is already one-to-one
 - A static mapping would be helpful for the clients...

NAT and Security

- NAT is often advertised as being essential for security
- Security through obscurity?
 - "If evil hacker on public network can't see me, I must be secure!"
 - **7** Computers on private network using PAT are hidden
 - Protects against worms scanning for exploits as long as there are no static mappings allowing outside access
 - If your parents have a simple PAT in front of their unpatched Windows box, they're protected against some worms

NAT and Security

- Provides no protection against whole classes of malware
 - A security flaw in your PDF viewer can still be exploited by a bad download
 - The user can still do dangerous / stupid things ("Click on Angelina_Jolie.exe for free pictures!")
- Limited protection on larger networks
 - Servers must be publicly accessible to perform their function (via fixed port or IP mapping)
 - If your IIS webserver or Linux server with remote SSH is unpatched, it is still vulnerable to worms
 - Once compromised, this machine provides entry vector to reach internal network, which may be completely unprotected!
- Don't let your guard down Security in depth

Nesting IP Ranges via NAT

- Allowed to have multiple levels of NAT
 - Each level performs translation independently without any understanding of entire network

0

NAT Slipstreaming

Computer Network Security

NAT Slipstreaming

- Method to bypass NATs and firewalls to reach devices on internal network
- ↗ NAT Slipstreaming v1
 - Vuln can open external access to any port on your device behind your NAT
 - By Samy Kamkar
 - Disclosed Oct 31 2020
- ↗ NAT Slipstreaming v2
 - Vuln can open external access to any port on <u>any device</u> behind your NAT
 - By Ben Seri, Gregory Vishnipolsky (w/Samy Kamkar)
 - Disclosed Jan 26 2021

NAT Slipstreaming v2.0

- General scenario
 - Internal network full of vulnerable devices
 - Industrial controllers? Security cameras? IOT? Printers?
 - Devices never intended to be on the public Internet
 - Devices with default logins
 - Devices with unpatched software
 - Devices "protected" by a NAT/firewall that only allows outbound access
 - Perimeter security is the only real security present
 - Slipstream attack tricks NAT into adding forwarding entries, making these internal devices accessible from public Internet

NAT Slipstreaming v2.0 Demo

NAT Slipstreaming V2.0

Demonstration

NAT/Firewall Bypass in an OT Network

https://www.youtube.com/watch?v=ZAEDu3kLR1o

NAT Slipstreaming v2.0

- Demo of implications of slipstreaming attack in an "OT" (operational technology, i.e. industrial) network
- See Also: Similar demo of same attack in an enterprise network (targeting a printer and security camera)
 - https://www.youtube.com/watch?v=M-6ppoYDEV4
- How does it *work*?

https://www.armis.com/resources/iot-security-blog/nat-slipstreaming-v2-0new-attack-variant-can-expose-all-internal-network-devices-to-the-internet/

NAT Slipstreaming v2.0

- 1. Attacker sends malicious link to www.igotcha.com
- 2. User clicks on www.igotcha.com
- 3. Malicious website runs code in browser
- Secondary web requests fool the NAT to expose multiple private IP addresses to the Internet
- 5. Attacker now has access to all devices
- 6. Specific device is identified for attack

Computer Network Security

<u>https://www.armis.com/resources/iot-security-blog/nat-slipstreaming-v2-0-new-attack-</u> variant-can-expose-all-internal-network-devices-to-the-internet/

Spring 2025

H.323 ALG

- → H.323 is a protocol used by VoIP (telephone)
- Pinhole in NAT (mapping to internal IP:port) must be created by Application Level Gateway (ALG) so that phone is reachable by external callers
 - **H**.323 port: **1720**
- Key "feature" (for slipstream attack) is that H.323 supports
 call forwarding and thus a good ALG should too

H.323 ALG

•	"My Phone": 10.1.0.3, port 52286	 Internet Protocol Version 4, Src: 10.1.0.3, Dst: 10.0.0.69 Transmission Control Protocol, Src Port: 52286, Dst Port: 1720, TPKT, Version: 3, Length: 71 Q.931 H.225.0 CS
•	"Other phone": 10.0.0.69, port 1720	 H323-UserInformation h323-uu-pdu h323-message-body: facility (6) facility
•	"Forwarded-To Phone": 10.1.08,	protocolldentifier: 0.0.8.2250.0.5 (Version 5) - alternativeAddress: ipAddress (0) - ipAddress ip: 10.1.0.8
	port 80 (the target we want to be publicly accessible)	port: 80 > reason: callForwarded (1) > callIdentifier > h245Address: ipAddress (0) fastStart: 0 items 1 multipleCalls: True 1 maintainConnection: True 0 h245Tunnelling: False

NAT Slipstreaming v2.0

- A web browser doesn't natively speak H.323 it isn't a VOIP phone. How can the attacker fake a H.323 conversation?
- The ALG doesn't track entire conversations (too memory intensive, too many TCP packets)
 - Just looks for a single TCP packet going to port 1720 where the contents match H.323 fields stateless
- Web browser (running attacker-controlled JavaScript) sends large HTTP Fetch request to attacker server, port 1720
- Uses padding bytes so that attacker-controlled bytes fit perfectly into a TCP packet by themselves NAT won't see the difference!
- Might take multiple attempts but attacker can loop and try again with different amount of padding

Remediation

- Remediated with web browser patches:
 - Slipstreaming v1: CVE-2020-16022 (Chrome) and other web browsers
 - Slipstreaming v2: CVE-2020-16043 (Chrome), CVE-2021-23961 (Firefox), CVE 2021-1799 (Safari)
- Browsers (Chrome et. al.) now block these ports from all HTTP/HTTPS/FTP communication

69	TFTP	1723	H.323
137	NetBIOS	5060	SIP
161	SNMP	5061	SIP
1719	H.323	6566	SANE
1720	H.323	10080	

Remediation

- Unresolved questions:
 - Can a pentester exploit this by non-web browser means? (Other methods of running arbitrary code on client inside network)
 - Can NAT/router/firewall vendors tighten up their ALGs? (Without breaking the purpose of the ALG?)