Forward Secrecy

The Threat

- "Eve" (cough, NSA, cough) records multiple years of encrypted messages between Alice and Bob from 2015-2017
 - Can't break them algorithm & implementation contains no known flaws
- Then, in October 2017, a zero-day exploit allows Eve to steal the encryption key from Alice
- Result: All historical messages saved can be decrypted

Revisiting – Heartbleed

- Not just a hypothetical concern!
- OpenSSL (2014) CVE-2014-0160 :
 - Allows remote attackers to obtain sensitive information from process memory via crafted packets that trigger a buffer over-read, as demonstrated by reading private keys
 - Allows attacker to recover a private key today, and decrypt any & all old encrypted traffic they may have stored

Forward Secrecy

- **Forward Secrecy** − Past sessions are protected against future compromise of secret keys
- Perfect Forward Secrecy Each encryption/decryption key is valid for only one "session"
 - Look for this!

Perfect Forward Secrecy Examples

- Transport Layer Security (TLS)
 - **Ephemeral** Elliptic Curve Diffie-Hellman ECDHE-RSA, ECDHE-ECDSA (E is for Ephemeral)
 - **Ephemeral** Diffie-Hellman
 - **▶** DHE-RSA, DHE-DSA
 - Easy to enable server-side, but can get lost in blizzard of TLS options and backwards compatibility
- Signal Protocol
 - Double Ratchet Algorithm https://signal.org/blog/advanced-ratcheting/
 - Signal messenger, WhatsApp, Facebook Messenger

- Encryption provided at the application layer
 - Physical layer Ethernet
 - → Network layer IP
 - Transport layer TCP
 - → Application layer TLS first, then ...
- Common uses: web (HTTPS), email, VOIP, messaging

- **7** Two variants
 - Secure Socket Layer (SSL) don't use!
 - → SSL 1.0 (never publicly used), SSL 2.0, SSL 3.0
 - Transport Layer Security (TLS) modern successor
 - **TLS 1.0, TLS 1.1, TLS 1.2, TLS 1.3 (draft)**

- Hybrid encryption scheme
 - Public key encryption for handshake
 - Symmetric key encryption for bulk data transport
 - Key is unique per session and negotiated during handshake
 - MACs to provide integrity
 - Data didn't change in transit
 - Certificate authorities (CAs) to provide authenticity
 - I'm communicating with the intended party
- Many (many!) choices in specific ciphers & algorithms

Client Hello

Version, crypto options, nonce

Server hello + server cert (PKs)

Version, crypto options, nonce, Signed certificate w/ server's public key

Server key exchange (when using DH)

Client key exchange

PreMaster secret encrypted with server's PKs

Handshake finished. Switch to **negotiated block cipher**

Data Transmission

You are here: Home > Projects > SSL Server Test > cyberlab.pacific.edu

SSL Report: cyberlab.pacific.edu (96.71.204.45)

Assessed on: Wed, 11 Oct 2017 06:54:16 UTC | Hide | Clear cache

Scan Another »

https://www.ssllabs.com/ssltest/analyze.html?d=cyberlab.pacific.edu

Certificate #1: RSA 2048 bits (SHA256withRSA)

Server Key and Certificate #1		*
Subject	cyberlab.pacific.edu Fingerprint SHA256: b0731f64779bb2eff4c3a95f4f1a3ebe93a16d9443cc711e101d3b092ba3d633 Pin SHA256: jlGvqRafKFLcXQfh2p9evh3mHGA3PxtQEqPaleZPX2I=	
Common names	cyberlab.pacific.edu	
Alternative names	cyberlab.pacific.edu	
Serial Number	04f03ad93ab340b00bb933104ab9abdc3dbf	
Valid from	Mon, 14 Aug 2017 17:31:00 UTC	
Valid until	Sun, 12 Nov 2017 17:31:00 UTC (expires in 1 month and 1 day)	
Key	RSA 2048 bits (e 65537)	
Weak key (Debian)	No	
Issuer	Let's Encrypt Authority X3 AIA: http://cert.int-x3.letsencrypt.org/	
Signature algorithm	SHA256withRSA	
Extended Validation	No	
Certificate Transparency	No	
OCSP Must Staple	No	
Revocation information	OCSP: http://ocsp.int-x3.letsencrypt.org	
Revocation status	Good (not revoked)	
DNS CAA	No (more info)	
Trusted	Yes	

https://www.ssllabs.com/ssltest/analyze.html?d=cyberlab.pacific.edu

https://www.ssllabs.com/ssltest/analyze.html?d=cyberlab.pacific.edu

Cipher Suites

# TLS 1.2 (suites in server-preferred order)	
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02f) ECDH secp256r1 (eq. 3072 bits RSA) FS	128
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xc030) ECDH secp256r1 (eq. 3072 bits RSA) FS	256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (0xc027) ECDH secp256r1 (eq. 3072 bits RSA) FS	128
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028) ECDH secp256r1 (eq. 3072 bits RSA) FS	256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xc013) ECDH secp256r1 (eq. 3072 bits RSA) FS	128
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) ECDH secp256r1 (eq. 3072 bits RSA) FS	256
TLS_RSA_WITH_AES_128_GCM_SHA256 (0x9c)	128
TLS_RSA_WITH_AES_256_GCM_SHA384 (0x9d)	256
TLS_RSA_WITH_AES_128_CBC_SHA256 (0x3c)	128
TLS_RSA_WITH_AES_256_CBC_SHA256 (0x3d)	256
TLS_RSA_WITH_AES_128_CBC_SHA (0x2f)	128
TLS_RSA_WITH_AES_256_CBC_SHA (0x35)	256

List was much longer (and weaker!) until custom configuration was applied to server

https://www.ssllabs.com/ssltest/analyze.html?d=cyberlab.pacific.edu

OK

UNIVERSITY OF THE PACIFIC

Safari is using an encrypted connection to cyberlab.pacific.edu.

Encryption with a digital certificate keeps information private as it's sent to or from the https website cyberlab.pacific.edu.

Js

Safari is using an encrypted connection to cyberlab.pacific.edu.

Encryption with a digital certificate keeps information private as it's sent to or from the https website cyberlab.pacific.edu.

C

Safari is using an encrypted connection to cyberlab.pacific.edu.

Encryption with a digital certificate keeps information private as it's sent to or from the https website cyberlab.pacific.edu.

Certificate Authorities

- Trusted third party
 - Trusted by owner of certificate (e.g. website)
 - Trusted by party relying on certificate (e.g. visitor)

Certificate Authorities

- Comodo is used by 16.4% of all websites
- Comodo is a SSL certificate authority with a market share of 39.2%
- October 13 2017 data

https://w3techs.com/technologies/overview/s sl certificate/all

Certificate Weaknesses

- Method 1: Place desired common name (e.g. "fakebook.com" in a bogus cert
 - Web browsers will validate cert and detect forgery
 - Other software libraries may have broken validation code and miss the forgery!
- Method 2: Trick/hack/bribe a CA to issue & sign. Any CA can issue any certificate for any domain!
 - ▶ Apple "System Roots" keychain: 168 entries
 - Other players also decide what root CAs to trust
 - Microsoft, Mozilla, Android

Root CA Misuse

- DigiNotar (Dutch CA)
 - Attacker signed wildcard cert for *.google.com
 - Used to conduct MITM attack against Google (multiple ISPs in Iran)
 - Issued July 27 2011, detected Aug 27 2011
 - Removed as trusted root CA Aug 29 2011
 - Company bankrupt

Root CA Misue

- **WoSign** (Chinese CA)
 - Issued fake cert in 2016 for *subdomain*.github.com due to shoddy/missing ownership verification process
 - https://www.schrauger.com/the-story-of-how-wosign-gave-me-an-ssl-certificate-for-github-com
 - Backdated SHA-1 certifications
 - Browsers were intentionally blocking weak SHA-1 certs after Jan 1 2016
 - https://wiki.mozilla.org/CA:WoSign Issues
 - Subsidiary StartCom/StartSSL (Isreal)
 - Slowly removed as trusted root CA in 2016-2017 by Google, Mozilla, Apple
 - But still in my Keychain? (?????)

Root CA Misuse

- **➣ Symantec** (US CA)
 - Accused by Google of issuing 30,000 suspect certificates
 - Not 30k attacks, but 30k certs with insufficient validation, audit, assurance, etc...
 - Chrome Root Certificate Policy What you must do if you want Google to trust you!
 - https://www.chromium.org/Home/chromium-security/root-capolicy
 - Google issued progressive *death penalty* (Chrome will stop trusting *customer* certs signed by Symantec in late 2018)
 - Aug 2 2017: Symantec sells certificate business to competitor DigiCert for \$950 million (cheap!) who will audit and re-certify following best practices

"Intent to Deprecate and Remove: Trust in existing Symantec-issued Certificates" - March 23 2017 https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/eUAKwjihhBs/rpxMXjZHCQAJ