
ì
Developer Cryptography Mistakes

Fall	2017Secure	Software	Systems

1



Top 10 Developer Crypto Mistakes

1. Hard-coded	keys

2. Improperly	choosing	an	IV

3. ECB	mode	of	operation

4. Wrong	use	or	misuse	of	a	
cryptographic	primitive	for	
password	storage

5. Passwords	are	not	
cryptographic	keys

6. MD5	just	won’t	die.	And	
SHA1	needs	to	go	too!

7. Assuming	encryption	
provides	message	integrity

8. Asymmetric	key	sizes	too	
small

9. Insecure	randomness

10. “Crypto	soup”

Fall	2017Secure	Software	Systems

2

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/



Hard Coded Keys

ì Don’t	hard-code	keys	into	your	programs

ì Problem	1:	Whoever	has	the	code	knows	the	keys	to	
decrypt	the	data
ì Should	your	developers	have	access	to	production	data?		

Probably	not…

ì Problem	2:	Key	management	challenge
ì If	key	is	compromised,	replacing	it	requires	releasing	a	

new	program	binary	(time	consuming)

ì Best	practice:	Never	seen	by	human	eyes,	never	saved	to	
disk

Fall	2017Secure	Software	Systems

3

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/



Improperly Choosing an IV

ì Don’t	hard-code	your	initialization	vector
ì Should	not	be	all-zero	either!
ì Should	not	be	predictable!

ì Problem:	Constant	IV	negates	cryptography
ì Example:	BEAST	SSL	attack	where	developers	used	

ciphertext from	prior	block	as	IV	for	next	block	– IV	was	
now	predictable!

ì https://blog.cryptographyengineering.com/2011/09/21/b
rief-diversion-beast-attack-on-tlsssl/

ì Best	practice:	Cryptographically	secure	random	number	
generator	each	time

Fall	2017Secure	Software	Systems

4

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/



ECB Mode of Operation

ì Don’t	use	ECB	mode!	(Electronic	Code	Book)

Fall	2017Secure	Software	Systems

5

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/



Don’t Hash Passwords!

ì Don’t	use	a	hashing	function!	(MD5,	SHA1,	SHA256,	…)
ì Problem:	Compute	too	quickly

ì Don’t	use	the	same	salt	for	each	password!
ì Problem:	Identical	passwords	will	map	to	identical	hash	

values

ì https://www.troyhunt.com/our-password-hashing-has-no-clothes/

ì Best	practice:	KDF (bcrpt,	scrypt,	argon2,	…)	+	random	
salt	for	each	password

Fall	2017Secure	Software	Systems

6

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/



Passwords Are Not Cryptographic Keys

ì Don’t	Use	Passwords	(directly)	as	a	Cryptographic	Key
ì Password:	

ì Remembered	by	humans
ì Arbitrary	length
ì Low	entropy	/	brute	force (for	90%+	of	the	passwords)

ì Key:	
ì Used	by	machines
ì Fixed	length
ì Should	be	full	entropy

ì Best	practice:	KDF (bcrpt,	scrypt,	argon2,	…)	+	random	
salt	for	each	password

Fall	2017Secure	Software	Systems

7

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/



MD5 Just Won’t Die. 
And SHA1 Needs to Go Too!

ì Don’t	use	MD5
ì Broken	due	to	collisions	(2005)

ì Don’t	use	SHA1
ì Broken	due	to	collisions
ì SHATTERED	demonstration	(2017)

(Two	PDFs	w/identical	SHA1	but	different	content)

ì Best	practice:	SHA2,	SHA3

Fall	2017Secure	Software	Systems

8

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/



Assuming Encryption Provides 
Message Integrity

ì Encryption	≠	Authentication

ì Encryption	provides	confidentiality,	but	an	attacker	
can	modify	ciphertext

ì Modified	ciphertext typically decodes	as	garbage,	
but	attacker	can	try	many	attempts	until	garbage	
causes	adverse	behavior	(bug)	in	program

ì Best	practices:		
ì Authentication	+	Encryption:	GCM,	CCM
ì Authentication-only:	GMAC,	HMAC

Fall	2017Secure	Software	Systems

9

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/



Asymmetric Key Sizes Too Small

ì Don’t	Use	Too	Short	of	Keys!	

ì Problem:	GPUs	are	too	parallel	/	brute	forcing	is	
possible	for	short	keys

ì https://www.keylength.com

ì Minimums	(2017,	IAD-NSA)
ì Symmetric	ciphers:	256	bit	minimum
ì Elliptic	Curve	Ciphers:	384	bit	minimum
ì Hash:	384	bit	minimum	(so	no	SHA-256)

Fall	2017Secure	Software	Systems

10

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/



Insecure Randomness

ì Don’t	Use	a	Pseudo-Random	Generator!
ì “Looks	Random-ish”	≠	“Random”

ì Best	practice:	OS-provided	mechanism
ì Accept	no	substitutes!	

(unless	you	have	a	fleet	of	lava	lamps)
ì Cryptographically	secure	random	number	generator

Fall	2017Secure	Software	Systems

11

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/



Crypto Soup

ì No	“Crypto	Soup”

ì No	“Buzzword	Salad”

ì Don’t	mix	a	bunch	of	crypto	
primitives	together	without	a	
clear	goal

Fall	2017Secure	Software	Systems

12



ì
Bonus Mistakes!

Fall	2017Secure	Software	Systems

13



Insecure By Default

ì Don’t	be	Insecure	by	Default
ì Security	should	not	be	optional
ì Security	should	not	be	configurable
ì Security	should	not	be	an	advanced	mode	described	

in	Chapter	14	of	the	manual

ì There	should	be	one	mode	of	operation,	and	it	
should	be	secure

ì Bonus!	Safe	from	rollback	attacks	(where	threat	
triggers	a	rollback	to	insecure	crypto)

Fall	2017Secure	Software	Systems

14



Traffic Analysis

ì Traffic	analysis	is	still	possible	on	encrypted	data!
ì Who	sent	it?	Who	received	it?
ì When	was	it	sent?
ì How	much	was	sent?
ì Metadata

ì Example:	SSH protocol	reveals	timing	between	
keystrokes	when	user	enters	password
ì https://www.usenix.org/legacy/events/sec01/full_p

apers/song/song.pdf
ì Timing	leak	– another	form	of	side	channel	attack

Fall	2017Secure	Software	Systems

15



Not Using Best Algorithm Available

ì Use	the	best	algorithm	available

ì Many	examples	where	this	hasn’t	happened
ì Microsoft	LANMAN password	hashing	algorithm

ì Crackable in	seconds
ì Proprietary	algorithm,	instead	of	MD5	which	was	

available	at	the	same	time	(which	at	least	took	
hours/days	to	crack)

ì DVD	CSS
ì Proprietary	algorithm	w/40	bit	keys	(short!)
ì Easily	crackable

Fall	2017Secure	Software	Systems

16

http://www.sane.nl/events/sane2000/papers/burnett.pdf



Focusing OnlyOn the Crypto

ì Don’t	focus	only on	the	Cryptography!

ì House	analogy
ì Front	door	lock	with	4	pins,	10	positions

ì 104 combinations	for	burglar	to	try
ì Front	door	lock	with	10	pins,	

10	positions
ì 1010 combinations	for	burglar

ì So	we’re	secure	now,	right?

Fall	2017Secure	Software	Systems

17



Focusing OnlyOn the Crypto

Fall	2017Secure	Software	Systems

18



Cleanup

ì Don’t	Leave	Private	Data	Around	After	Use!

ì Examples
ì Did	you	delete	plaintext	data	after	encryption?
ì Are	there	temporary	files	with	plaintext	data	on	

disk?	(What	about	swap	memory?)
ì Does	your	GUI	save	the	password	text	from	the	

prompt	dialog	in	memory	somewhere?
ì Are	you	sure	the	library	cleaned	up	afterwards?

Fall	2017Secure	Software	Systems

19


