
ì
Beyond Passwords

Fall	2017Secure	Software	Systems

1



Fall	2017Secure	Software	Systems

2



Beyond Passwords

ì Users	hate	passwords	😡

ì Security	professionals	hate	passwords	😡

ì Everybody	hates	passwords	😡

ì Criteria	to	do	better	than	passwords
ì Security
ì Usability
ì Deployability

Fall	2017Secure	Software	Systems

3



Beyond Passwords

Security
ì Physical	observation

ì Targeted	impersonation

ì Online	or	offline	guessing

ì Leaks

ì Phishing

ì Theft

ì Trusted	third	party

ì Privacy	

Usability
ì Memoryless

ì Scalable	for	users

ì Nothing	to	carry

ì Physically	effortless

ì Easy	to	learn

ì Efficient

ì Infrequent	errors

ì Easy	recovery	from	loss	

Fall	2017Secure	Software	Systems

4



Beyond Passwords

Deployability
ì Accessible

ì Low	Cost

ì Server	compatible

ì Browser	(client)	compatible

ì Mature

ì Non-proprietary	

Fall	2017Secure	Software	Systems

5

Phew	– long	list!



Beyond Passwords

ì Password	managers

ì Proxies

ì Federated	identity	
management

ì Graphical

ì Cognitive

ì Paper	tokens

ì Visual	cryptography

ì Hardware	tokens

ì Phone-based

ì Biometric	

Fall	2017Secure	Software	Systems

6



Fall	2017Secure	Software	Systems

7



ì
Tokens

Fall	2017Secure	Software	Systems

8



Authentication Tokens

Fall	2017Secure	Software	Systems

9

Authenticate	a	human	based	on	
possession	of	a	small	machine



Enrollment

ì At	enrollment,	human	is	issued	a	token
ì Ranges	from	dumb	(a	physical	key,	a	piece	of	paper)	

to	a	smart	machine	(a	cryptographic	processor)
ì Token	becomes	attribute	of	human's	identity	

ì Easy	to	carry,	maintenance-free,	low	cost
ì Only	a	subset	of	goals	previously	discussed!

Fall	2017Secure	Software	Systems

10



Example: Garage Door Opener

ì Activated by	user	(button	press),	
provides	entry	past	barrier	(gate,	door)

ì One-pass	protocol	– only	one	message	sent

ì Token	stores	serial	number	T

ì Barrier	stores	all	serial	numbers	for	all	authorized	
tokens

ì To	enter:		Token->Barrier:		T

Fall	2017Secure	Software	Systems

11



Example: Garage Door Opener

ì Attack	1	– Replay	attack
ì Thief	waits	nearby,	captures	serial	number	with	

antenna,	programs	new	token	with	same	number,	
gains	entry

ì Attack	2	– Brute	force
ì Thief	programs	device	to	try	all	serial	numbers	(e.g.	

16	bit	numbers)	and	waits	a	little	while	to	gain	entry

ì Countermeasure?			Nonce

Fall	2017Secure	Software	Systems

12



Example: Garage Door Opener

ì Barrier	has	a	(secret)	master	key	–mk

ì Token	stores
ì Serial	number	T
ì Nonce	N (sequence	counter)
ì Shared	key	k which	is	H(mk,	T)

ì Barrier	stores
ì Same	values	as	token	for	all	authorized	tokens
ì Master	key	mk

ì To	enter:		Token→Barrier:		T,	MAC(T,	N;	k)
ì Token	increments	N
ì Barrier	increments	N	if	MAC	tag	verifies

Fall	2017Secure	Software	Systems

13



Example: Garage Door Opener

ì Problem:	Desynchronization	of	nonce

ì Partial	Solution:	“Rolling	window”	of	nonces

Fall	2017Secure	Software	Systems

14



Remote Authentication

Fall	2017Secure	Software	Systems

15

🙋
Human	
Hu 💻

Local	
System	

L

🖥
Remote	
System	S🎫

Token	T

😈
😈



Example: SecurID

ì Token	displays	code that	changes
every	60	seconds
ì LCD	display
ì Internal	clock
ì No	human	input
ì Can	compute	hashes	and	MACs
ì Stores	secret	(factory	encoded	random	key)

ì “nonce”	is	now	current	time (still	a	number	used	once)

ì Uses	local	device	(L)	to	input	PIN

Fall	2017Secure	Software	Systems

16



Example: SecurID

Assume

ì Remote	system	S stores	
tuples	(id_T,	id_Hu,	kT,	pin)

ì Local	system	L

ì Human	Hu	stores	PIN

ì Token	T	stores	id_T,	kT

1. Hu→L:	I	want	to	authenticate	as	id_Hu to	S

2. L	and	S:	Establish	secure	channel	(against	Eve)

3. L→Hu:	Enter	pin	and	code	on	keyboard

4. T→Hu:	code	=	MAC(time@T,	id_T,	kT)

5. Hu→L:	pin,	code

6. L:	compute	h=H(pin,	code)

7. L→S:	id_Hu,	h

8. S:	lookup	(pin,	id_T,	kT)	for	id_Hu;
1. id_Hu is	authenticated	if	

h=H(pin,	MAC(time@S,	id_T;	ktT))

Fall	2017Secure	Software	Systems

17



Example: SecurID

ì Engineering	challenge
ì Clock	synchronization	between	T and	S
ì S tracks	clock	skew	on	per-token	basis

ì Security	challenge
ì Theft	of	kT from	S for	all	tokens

ì 2011	data	breach	of	RSA
ì Suspect	that	secure	token	seeds	may have	been	stolen
ì RSA	offered	replacement	tokens	to	30,000	companies	

that	used	them

Fall	2017Secure	Software	Systems

18



One-Time Password

Fall	2017Secure	Software	Systems

19

... 
50: MEND VOTE MALE HIRE BEAU LAY
49: PUG LYRA CANT JUDY BOAR AVON 
48: LOAM OILY FISH CHAD BRIG NOV 
47: RUE CLOG LEAK FRAU CURD SAM
46: COY LUG DORA NECK OILY HEAL 
45: SUN GENE LOU HARD ELY HOG 
44: GET CANE SOY NOR MATE DUEL 
43: LUST TOUT NOV HAN BACH FADE 
42: HOLM GIN MOLL JAY EARN BUFF 
41: KEEN ABUT GALA ASIA DAM SINK 
... 



One-Time Password

ì One-Time	Password	is	only	valid	once	(first	use)
ì Similar	to	changing	your	password	each	time
ì Prevents	replay	attacks
ì Man-in-the-middle	attacks	still	possible

ì Use	case:	Login	at	untrusted	public	machine	where	
keylogging	is	possible

ì Use	case:	Account	recovery	if	main	password	or	
two-factor	device	(e.g.	phone)	is	lost
ì Google	backup	codes

Fall	2017Secure	Software	Systems

20



One-Time Password

ì Naïve-implementation
ì Pre-registered	one-time	passwords	distributed	on	

paper		(hassle	to	obtain,	risk	of	running	out	of	
passwords)

ì Real	implementation
ì Algorithm	generation	of	one-time	passwords
ì SecurID is	an	example	– each	code	is	a	password	

valid	for	only	60	seconds
ì Generation	method:	Iterated	hashing

ì Lamport’s Scheme,	S/KEY	password	system	

Fall	2017Secure	Software	Systems

21



ì
Certificates

Fall	2017Secure	Software	Systems

22



Digital Certificate

ì Digital	certificate	binds	together
ì Identity	of	principal
ì Public	key	of	principal	(encryption	or	verification	key)

ì Cert(S;	I):		Certificate	issued	by	principal	I for	principal	S
ì Issuer I	certifies	that	K_S belongs	to	Subject id_S
ì b	=	id_S,	K_S (id	of	subject,	key	of	subject)
ì Cert(S;	I)	=	b,	Sign(b;	k_I)

ì Fingerprint:		H(Cert(S;	I))

Fall	2017Secure	Software	Systems

23



Digital Certificate Authentication

Fall	2017Secure	Software	Systems

24

🙋
Subject

S 🖥
Authenticator	

A🔖
Certificate	
Issuer

I



Digital Certificate Authentication

1. S:	Let	msg =	“I’m	id_S”.
Compute	s	=	Sign(m;	k_S)

2. S →A:		msg,	s

3. A:	Find	Cert(S;	I)
1. Verify	I’s	signature	on	cert
2. Verify	id_S
3. Retrieve	K_S
4. Accept	if	Ver(msg;	s;	K_S).

ì Notes
ì I	must	be	trusted	to	issue	

certificate
ì A	must	verify	id_S – don’t	

omit!

Fall	2017Secure	Software	Systems

25



X.509 Certificates

Overview
ì Standard	format	for	

certificates
ì RFC	5280

ì Used	for
ì SSL/TLS
ì S/MIME	(email)
ì EAP-TLS	(Wi-Fi)

Contents
ì Serial	number

ì Issuer	distinguished	name

ì Validity	period
(start	and	end	time)

ì Subject	distinguished	name

ì Subject	public	key	(and	name	of	
algorithm)

ì Issuer’s	signature	for	all	above	
data	(and	name	of	algorithm)

Fall	2017Secure	Software	Systems

26



X.500 Distinguished Names

ì General	purpose	directory

ì Common	options	for	X.509	certificates
ì Common	Name	(CN):	Human	full	name,	server	

name,	or	domain	name
ì Organization	unit	(OU):	Finance,	HR,	…
ì Organization	(O):		Pacific,	Google,	…

Fall	2017Secure	Software	Systems

27



Certificate Chain

ì Problem
ì Receive	a	message	signed	by	A,	but	don’t	know	A’s	

public	verification	key
ì Find	a	certificate	Cert(A;	B)

ì Certificate	for	A	signed	by	B
ì But	don’t	know	B’s	public	key	either!

Fall	2017Secure	Software	Systems

28



Certificate Chain

ì Solution:	Recursion J
ì Set	of	certificates
ì Cert(A;	B),	then	Cert(B;	C);	then	Cert(C;	D),	and	hopefully	

you	know	D’s	public	key

ì Certificate	chain – sequence	of	certificates	that	certify	
each	other
ì One	end:	Certificate	for	principal	you	want	to	

authenticate
ì Other	end:	Certificate	for	principal	you	already	know

ì Root	or	anchor	of	trust
ì Must	trust	every	issuer	in	the	chain	to	issue	certificates

Fall	2017Secure	Software	Systems

29



Public-Key Infrastructure

ì System	for	managing	distribution	of	certificates

ì Two	models
ì Decentralized	– peer	to	peer,	no	leader

ì PGP
ì Centralized	– oligarchy,	leadership	by	elite

ì CA

Fall	2017Secure	Software	Systems

30



ì
PKI Decentralized: PGP

Fall	2017Secure	Software	Systems

31



PKI Example: PGP

ì “Pretty	Good	Privacy”
ì Encryption	tool	for	emails	and	files
ì Dates	back	to	early	days	of	crypto	(1991)
ì Developed	by	Phil	Zimmermann

ì Investigated	by	US	Government	for	“Munitions	export	
without	a	license”

Fall	2017Secure	Software	Systems

32



PKI Example: PGP

ì Each	user	manages	a	keyring

ì Alice	has	her	key	in	her	keyring

ì Alice	meets	Bob	at	key-signing	party
ì She	copies	his	key	into	her	keyring
ì She	marks	Bob	as	fully or	marginally	trusted as	an	

introducer
ì She	copies	other	keys	he	might	have	collected,	too

ì Other	option:	Downloading	keys	from	a	key	server	(but	
you	have	little	proof	of	who	they	actually	belong	to)

Fall	2017Secure	Software	Systems

33



PKI Example: PGP

Fall	2017Secure	Software	Systems

34

https://xkcd.com/364/

Never	bring	tequila	to	a	key-signing	party….



PKI Example: PGP

ì Entries	on	the	keyring	are	certificates

ì Alice’s	own	key	on	her	keyring
ì Cert(A;	A)		<- Self-signed	certificate!

ì When	Alice	imports	a	key	signed	by	Bob,	she	gets	
Cert(C;	B)
ì She	can	import	as-is	and	put	Cert(C;	B)	into	keyring
ì She	can	vouch	for	it	and	put	Cert(C;	A)	into	keyring

ì Can	phone	Bob	and	manually	verify	a	certificate	
taken	from	a	key	server

Fall	2017Secure	Software	Systems

35



PKI Example: PGP

ì Keys	on	keyring	are	fully	valid	only	if
ì Signed	by	1	fully	trusted	introducer	or	3	marginally	

trusted	introducers
ì The	certificate	chain	leading	from	key	to	user’s	own	

key	has	length	of	5	or	less

ì Valid	keys	can	be	used	for	encryption	and	signing

Fall	2017Secure	Software	Systems

36



PKI Example: PGP

Fall	2017Secure	Software	Systems

37

“As	time	goes	on,	you	will	accumulate	keys	from	other	people	that	
you	may	want	to	designate	as	trusted	introducers.	Everyone	else	
will	each	choose	their	own	trusted	introducers.	And	everyone	will	
gradually	accumulate	and	distribute	with	their	key	a	collection	of	
certifying	signatures	from	other	people,	with	the	expectation	that	
anyone	receiving	it	will	trust	at	least	one	or	two	of	the	signatures.	
This	will	cause	the	emergence	of	a	decentralized	fault-tolerant	
web	of	confidence	for	all	public	keys.”

Phil	Zimmermann,	1992



ì
PKI Centralized: CAs

Fall	2017Secure	Software	Systems

38



PKI Example: CAs

ì Certificate	Authority	(CA)
ì Principal	whose	purpose	is	to	issue	certificates

ì Centralized	PKI	philosophy

Fall	2017Secure	Software	Systems

39



PKI Example: CAs

ì Everyone	enrolls	with	CA	to	get	certificate
ì Example:	Alice	enrolls	and	get	Cert(Alice;	CA)

ì Bob’s	system	comes	pre-installed	with	CA’s	self-
signed	certificate	Cert(CA;	CA)

ì When	Bob	receives	message	signed	by	Alice
ì Bob	contacts	CA	to	get	Cert(Alice;	CA)
ì Or	Alice	includes	that	certificate	with	her	message

Fall	2017Secure	Software	Systems

40



PKI Example: CAs

ì Web	server	has	Cert(server;	CA)	installed
ì Server	identity	is	hostname
ì CA	is	a	root	for	which	Cert(CA;	CA)	is	installed	in	

browser

ì Browser	authenticates	web	server	using	hostname	
and	public	key	from	certificate

Fall	2017Secure	Software	Systems

41



Many Certificate Authorities

ì Many	many Certificate	Authorities	
ì No	single	CA	will	be	trusted	by	all	world	

governments,	militaries,	businesses,	…

ì OS	and	web	browsers	come	with	some	CAs pre-
installed

ì Organizations	act	as	their	own	CAs
ì Company	issues	certificates	to	employees	for	VPN
ì Central	bank	issues	certificates	to	other	banks
ì Manufacturer	issues	certificates	to	sensing	devices

Fall	2017Secure	Software	Systems

42



Enrollment with CA

ì You	create	a	key	pair	– the	CA	never	knows	your	
private	key

ì You	generate	a	certificate	signing	request	(CSR)
containing	the	identity	you	are	claiming

ì You	send	the	CSR	to	a	CS	(w/payment?)

ì CA	verifies	your	identity	(how	well?)

ì CA	signs	your	public	key,	creating	a	certificate,	and	
sends	certificate	to	you

Fall	2017Secure	Software	Systems

43



Identity Verification

ì Extended	Validation	(EV)	certificate
ì CA	does	extra	checking	of	your	identity
ì Certificate	marked	as	having	received	EV
ì Web	browser	displays	EV	mark	in	GUI

ì Extra	checking	(in	exchange	for	more	$$$)
ì Verify	legal	existence	of	organization
ì Verify	physical	presence	of	organization
ì Verify	ownership/control	over	domain

ì CA	records	that	data	in	certificate	as	part	of	subject	
identity

Fall	2017Secure	Software	Systems

44



Fall	2017Secure	Software	Systems

45
Extended	Validation	Certificate



Fall	2017Secure	Software	Systems

46
Domain	Validated	Certificate



Issuing Certificates

ì Conflicting	goals

ì CA	private	signing	key	must	be	kept	secret
ì Public	verification	key	is	pre-installed	on	user	

systems	and	hard	to	update
ì A	leaked	private	signing	key	could	forge	certificates
ì Solution:	Keep	private	key	offline	in	“cold	storage”

ì CA	private	signing	key	must	be	available for	use
ì Needed	to	sign	new	certificates	for	customers
ì Solution:	Keep	it	in	computer	memory

Fall	2017Secure	Software	Systems

47



Issuing Certificates

ì Solution?	Use	root	and	intermediate	CAs

ì Root	CA
ì Certificate	at	root	of	trust	in	chain
ì Public	key	pre-installed	at	client	PCs
ì Private	key	kept	offline	/	highly	secure

ì Intermediate	CAs
ì Certified	by	root	CA
ì Used	to	certify	user	keys
ì Might	by	run	by	different	organization	than	root	CA

Fall	2017Secure	Software	Systems

48



ì
PKI Problems

Fall	2017Secure	Software	Systems

49



Problem 1: Revocation

ì Key	gets	compromised	(subject	or	issuer)
ì Your	website	gets	hacked	and	private	key	stolen

ì Subject	leaves	an	organization	(and	certificates	
need	to	be	revoked)

ì Several	(mediocre)	options
ì Fast	expiration
ì Certificate	revocation	list	(CRL)
ì Online	certificate	validation

Fall	2017Secure	Software	Systems

50



Problem 1: Revocation

ì Fast	expiration

ì Idea
ì Validity	interval	is	short	(10	mins	to	24	hours)
ì Any	compromise	is	for	a	bounded	time	period

ì Problems
ì CAs have	to	issue	new	certificates	frequently

(do	they	need	to	re-check	identity?)
ì Machines	have	to	update	certificates	frequently

ì Would	need	to	automate

Fall	2017Secure	Software	Systems

51



Problem 1: Revocation

ì Certificate	Revocation	List	(CRL)

ì Idea
ì CA	posts	lists	of	revoked	certificates
ì Clients	download	and	check	list	every	time	they	need	to	validate	

certificate

ì Problems
ì Clients	don’t	bother	checking	(usability	problems)

ì Large	list,	download	time
ì Or	clients	cache	(TOCTOU attack)
ì CRL must	always	be	available	(DDOS	attack?)

ì Chromium example	– limit	of	250kB
ì https://dev.chromium.org/Home/chromium-security/crlsets

Fall	2017Secure	Software	Systems

52



Problem 1: Revocation

ì Online	Certificate	Validation

ì Idea
ì CA	runs	validation	server
ì Client	contacts	server	each	time	to	validate	certificate

ì Problems
ì Clients	don’t	bother

ì Checking	adds	latency	to	each	new	session
ì Server	must	always	be	available	(DDOS?)

ì Clients	“soft	fail”	to	mitigate	risk	and	users	don’t	notice
ì Reveals	to	CA	which	websites	you	want	to	access	- privacy

Fall	2017Secure	Software	Systems

53



Problem 1: Revocation

Fall	2017Secure	Software	Systems

54

ì Online	Certificate	Status	Protocol	(OCSP)
ì Support:	IE,	Firefox,	Safari,	but	not Chrome

🙋
(alice)

(
(bob)

)
(carol)
CA

Here	is	my	
public	certificate
(signed	by	Carol)

I	don’t	trust	Alice.
Can	you	confirm	
this	cert?
(OCSP request)

Cert	is	still	valid
(OCSP reply)

Note:	Alice	and	Bob	both	trust	Carole	as	CA.	(Have	Carole’s	root	cert	preinstalled)



Problem 1: Revocation

ì OCSP Stapling	(aka	TLS	Certificate	Status	Request)

ì Idea
ì Certificate	must	be	accompanied	by	“fresh”	assentation	from	CA	that	

certificate	is	valid	(window	of	a	few	days)
ì Whoever	presents	certificate	to	client	is	also responsible	for	acquiring	the	

fresh	assertation and	stapling it	to	the	certificate

ì Bypasses	most	problems	with	online	validation
ì No	privacy	concern	– the	CA	only	knows	their	customer	(website),	not	the	

client	(visitor)
ì Performance	better	– Certificate	holder	requests	verification	once	(per	time	

interval)	– no	need	for	each	client	to	verify!
ì Clients	don’t	incur	latency	of	verification	request

ì Support:	Firefox,	IE,	Chrome

Fall	2017Secure	Software	Systems

55



Problem 1: Revocation

ì https://blog.hboeck.de/archives/886-The-Problem-
with-OCSP-Stapling-and-Must-Staple-and-why-
Certificate-Revocation-is-still-broken.html
ì Still	not	perfect!	(as	of	early	2017)
ì Implementation	issues	with	Apache	and	Nginx	make	

it	risky	to	enable	OCSP Stapling	without	risking	your	
clients	receiving	errors	in	the	case	of	temporary	
failure	of	OCSP verification	server

ì Doesn’t	work	with	intermediate	CA	certs	(can	only	
staple	one	OCSP response	at	a	time)

Fall	2017Secure	Software	Systems

56



Problem 2: Authority

ì CA	goes	rogue	or	gets	hacked
ì Already	discussed	in	cryptography	discussion

ì Mediocre	solutions	
ì HTTP	Public	Key	Pinning	(HPKP)

ì Upon	first	connection	to	server,	client	leans	of	public	keys.	In	future	
connections,	certificate	must	contain	one	of	those	keys

ì Deprecated	by	Chrome	– too	risky	to	deploy!
ì Certificate	transparency

ì Maintain	public	log	of	issued	certificates	and	monitor	log	to	detect	malicious	
activity

ì DNS	Certificate	Authority	Authorization	(CAA)
ì DNS	record	for	entity	specifies	list	of	allowed	CAs
ì For	the	CA,	not	for	the	client!	Legitimate	CA	won’t	issue	cert	unless	in	DNS	list

ì DNS-based	Authentication	of	Named	Entities	(DANE)
ì Bypasses	CAs entirely	and	relies	on	DNS	to	bind	certificates	to	host	names

Fall	2017Secure	Software	Systems

57

L


