

Secure Software Systems

CYBR 200 | Fall 2018 | University of the Pacific | Jeff Shafer

Beyond the Attack

Content adapted from CS 5430 (System Security), Cornell University, Dr. Michael Clarkson

Schedule

This Week

- **7** Tue August 28
 - Intro lecture
- ↗ Thur August 30
 - Project 1 Discussion
 - Security Policy & Aspects

Next Week

- **Tue September 4**
 - Threats, Harm, and Vulnerabilities
 - **7** Goals and Requirements
- **7** Thur September 6
 - オ Assurance

Beyond the Attack

https://www.forbes.com/sites/kevinanderton/2017/03/29/8-major-cyber-attacks-of-2016-infographic

CYBER ATTACKS \mathbf{OF}

Hacked: US Department Of Justice

Who did it: Unknown

What was done: Information on January

Beyond the Attack

Attacks

are perpetrated by

threats

that inflict

harm

by exploiting vulnerabilities

which are controlled by countermeasures.

Threats

6

Def: A *principal* that can cause *harm* to *assets*

What kinds of threats can you think of?

One example:
 Hackers driven by technical challenges

Threats

- **Inquisitive people**, unintentional blunders
- Hackers driven by technical challenges
- Disgruntled employees or customers seeking revenge
- Criminals interested in personal financial gain, stealing services, or industrial espionage
- Organized crime with the intent of hiding something or financial gain

- Organized terrorist groups attempting to influence policy by isolated attacks
- Foreign espionage agents seeking to exploit information for economic, political, or military purposes
- Tactical countermeasures intended to disrupt specific weapons or command structures
- Multifaceted tactical information warfare applied in a broad orchestrated manner to disrupt a major military missions
- Large organized groups or nation-states intent on overthrowing a government

Harm

8

Def: A negative consequence to a system *asset*

- Asset?
 - Information (typically)
 - Hardware and software (potentially)
- **Types of harm (the C-I-A aspects)**
 - Damage to confidentiality (e.g., interception)
 - Damage to *integrity* (e.g., modification, fabrication)
 - **7** Damage to *availability* (e.g., interruption)

Discussion

Papapavlo's Bistro and Bar

- Let's say they contract with <u>opentable.com</u> to enable online reservations
- What does the restaurant risk in this relationship?
 - **↗** Confidentiality?
 - Integrity?
 - Availability?

Fall 2018

Vulnerabilities

Def: An unintended aspect of a system (design, implementation, or configuration) that can cause the system to do something it shouldn't, or fail to do something it should

Examples: Buffer overflow, code injection, XSS, misconfiguration, bugs in access control/authentication 10

Vulnerabilities

- **D**atabases:
 - ↗ NVD: <u>https://nvd.nist.gov/</u>
 - National Vulnerability Database
 - CVE: <u>https://cve.mitre.org/</u>
 - Common Vulnerabilities and Exposures
- Ignoring vulnerabilities is risky
 - Weakest link is all a threat needs!
- Assumptions are also vulnerabilities!
 - Assumptions about timing/sequence of events, failure modes, message delivery, input format, etc...

Trust vs Trustworthy

- A trusted component is *assumed* to satisfy a security policy
- A trustworthy component additionally is accompanied by <u>evidence</u> that it satisfies the policy
 - Goal of security practitioners: transform *trust* into *trustworthiness*

Discussion

Papapavlo's Bistro and Bar

- Let's say they contract with <u>opentable.com</u> to enable online reservations
- What vulnerabilities might threats exploit to cause harm to Papapavlo's?

Countermeasures

Def: A defense that protects against attacks by neutralizing either the threat or vulnerability involved

- オ Strategy:
 - **Prevent**: block attack or close vulnerability
 - **Deter**: make attack harder but not impossible
 - **Deflect**: make other targets more attractive
 - Mitigate: make harm less severe
 - **Detect**: as it happens or after the fact
 - **Recover**: undo harm

Types of Countermeasures

- Physical: something tangible (walls, locks, guards)
- Procedural: protocols for how people act (laws, regulations, policies, contracts)
- Technical: hardware and software (cryptography, access control, passwords, intrusion detection systems, ...)

Technical Countermeasures

- Isolation: restrict communication between components (virtual machines, sandboxes, processes, firewalls)
- Monitoring: a program analyzes execution and blocks bad things from happening (reference monitor, intrusion detection system)
- Recovery: detect and reverse effects of harm (transactions, backups, key changes)

Discussion

Papapavlo's Bistro and Bar

- Let's say they contract with <u>opentable.com</u> to enable online reservations
- What countermeasures might be employed to mitigate these vulnerabilities?

Beyond the Attack

Attacks

are perpetrated by

threats

that inflict

harm

by exploiting vulnerabilities

which are controlled by countermeasures.

18

Secure Software Systems

Security Approaches

- Prevention: build systems that are completely free of vulnerabilities
- Risk management: invest wisely in countermeasures
- Deterrence through accountability: attribute attacks to humans and legally prosecute

Principles of Prevention

- Accountability
- Complete Mediation
- Least Privilege
- Separation of Privilege

- Defense in Depth
- Economy of Mechanism
- Open Design
- Psychological Acceptability

Accountability

Accountability

Hold principals responsible for their actions

- Authorization: mechanisms that govern whether actions are permitted
 - Vault <u>locks</u> keep out most principals
- Authentication: mechanisms that bind principals to actions
 - Vault key enables specific principals
- Audit: mechanisms that record and review actions
 - Vault <u>security cameras</u> monitor all principals

Complete Mediation

Complete Mediation

Every operation requested by a principal must be intercepted and determined to be acceptable according to the security policy

- Component that does the interception and determination is the reference monitor
- Related to Accountability
- Restricts caching of information, including previous decisions

Least Privilege

Principals should be given the minimum privileges necessary to accomplish their task

- Limits the damage that can result from accident or malice
- aka "need to know"

Failsafe Default

Failsafe Defaults

Base decisions on the *presence of privilege*, not the *absence of prohibition*

- **↗** The default answer is "**no**"
 - **オ** Say "yes" only when there is an explicit reason to do so
- Principals who discover they don't have access will complain
- Attackers who discover they do have access won't complain!

Separation of Privilege

Separation of Privilege

Different operations should require different privileges

- Supports Least Privilege
- In tension with usability: too many operations and objects and principals

Defense in Depth

Defense in Depth

Prefer a set of complementary mechanisms over a single mechanism

- **Complementary**:
 - Independent: attack that compromises one mechanism is unlikely to compromise others
 - Overlapping: attacks must compromise multiple mechanisms to succeed

Economy of Mechanism

Economy of Mechanism

Prefer mechanisms that are simpler and smaller

- **Easier to <u>understand</u>**, construct, analyze
 - And thus less likely to have unknown vulnerabilities
- Applies to any aspect of system, not just security
- Trusted computing base (TCB): mechanisms that implement the core security functionality
 - …keep the TCB small

Economy of Mechanism

seL4 microkernel https://sel4.systems/

"The world's first operating-system kernel with an endto-end proof of implementation correctness and security enforcement..."

A microkernel is small – not a full operating system!

Security shouldn't depend upon the secrecy of design or implementation


```
efdtt.c
                    Author: Charles M. Hannum <root@ihack.net>
                                                                               */
                                                                               */
       Thanks to Phil Carmody <fatphil@asdf.org> for additional tweaks.
                                                                               */
                                                                               */
/ *
/*
       Length: 434 bytes (excluding unnecessary newlines)
                                                                               */
/*
                                                                               */
/*
       Usage is: cat title-key scrambled.vob | efdtt >clear.vob
                                                                               */
#define m(i) (x[i]^s[i+84]) <</pre>
unsigned char
x[5], y, s[2048]; main(n) {for(read(0,x,5); read(0,s, n=2048); write(1,s,n)) if(s[y=s[13]
%8+20]/16%4==1) {int i=m(1)17^256+m(0)8, k=m(2)0, j=m(4)17^m(3)9^k*2-
k%8^8, a=0, c=26; for (s[y]-=16;--
c;j*=2)a=a*2^i&1,i=i/2^j&1<<24;for(j=127;++j<n;c=c>y)c+=y=i^i/8^i>>4^i>>12,i=i>>8
^y<<17,a^=a>>14,y=a^a*8^a<<6,a=a>>8^y<<9,k=s[j],k="7Wo~'G \216"[k&7]+2^"cr3sfw6v;
*k+>/n."[k>>4]*2^k*257/8,s[j]=k^(k&k*2&34)*6^c+~y;}
```

https://www.cs.cmu.edu/~dst/DeCSS/Gallery/hannum-efdtt-source.txt

Security shouldn't depend upon the secrecy of design or implementation

- Arguments **for** open design:
 - Secrets eventually come out: reverse engineering is possible, employees move around
 - Making details public increases chance of identifying and repairing vulnerabilities

Security shouldn't depend upon the secrecy of design or implementation

- Arguments **against** open design:
 - Secrecy supports Defense in Depth by making it harder to find vulnerabilities
 - Lack of hard evidence that Linus' Law really holds ("given enough eyeballs, all bugs are shallow")
 - After identification, some vulnerabilities cannot quickly or easily be repaired

Psychological Acceptability

•••		Q Search Demo Vault		<u>A</u>
💿 Demo 🗘		13 items sorted by Favorite \sim		Dropbox
See All Items 45		Dropbox wendy.h.appleseed@gmail.com		★ ①
Categories	Etsy	Fitbit wendy.h.appleseed@gmail.com Etsy	username password strength	wendy.h.appleseed@gmail.com
Credit Cards	Ć	Wendyappieseed My Apple ID wendy.h.appleseed@gmail.com	website	https://www.dropbox.com/login
Passwords	4	Evernote wendy-appleseed	One-Time Password	Section 936-138 🔾
Reward Programs		iMore Forums wendy.appleseed	tags	Apple Watch
Folders	VISA	CIBC Visa Gold 4500 **** 5678		show web form details
ForumsPersonal	Į.	Macworld wendyappleseed	last modified created	7 Mar 2016 at 17:40 16 Sep 2014 at 04:40

Psychological Acceptability

Minimize the burden of security mechanisms on humans

- Don't make operations (much) more difficult to complete than if security mechanisms were absent
- Don't make configuration difficult
- Produce comprehensible error messages
- Always a tradeoff between security and usability