
ì
Secure Software Systems
CYBR 200 | Fall 2018 | University of the Pacific | Jeff Shafer

Beyond the Attack

Content adapted from CS 5430 (System Security), Cornell University, Dr. Michael Clarkson

Schedule

This Week
ì Tue August 28

ì Intro lecture

ì Thur August 30
ì Project 1 Discussion
ì Security Policy & Aspects

Next Week
ì Tue September 4

ì Threats, Harm, and
Vulnerabilities

ì Goals and Requirements

ì Thur September 6
ì Assurance

Fall 2018Secure Software Systems

2

ì
Beyond the Attack

Fall 2018Secure Software Systems

3

Fall 2018Secure Software Systems

4
https://www.forbes.com/sites/kevinanderton/2017/03/29/8-major-cyber-attacks-of-2016-infographic

Beyond the Attack

Fall 2018Secure Software Systems

5

Attacks
are perpetrated by

threats
that inflict

harm
by exploiting

vulnerabilities
which are controlled by

countermeasures.

Threats

ì What kinds of threats can you think of?
ì One example:

Hackers driven by technical challenges

Fall 2018Secure Software Systems

6

Def: A principal that can cause harm to assets

Threats

ì Inquisitive people, unintentional blunders

ì Hackers driven by technical challenges

ì Disgruntled employees or customers
seeking revenge

ì Criminals interested in personal financial
gain, stealing services, or industrial
espionage

ì Organized crime with the intent of hiding
something or financial gain

ì Organized terrorist groups attempting to
influence policy by isolated attacks

ì Foreign espionage agents seeking to
exploit information for economic, political,
or military purposes

ì Tactical countermeasures intended to
disrupt specific weapons or command
structures

ì Multifaceted tactical information warfare
applied in a broad orchestrated manner to
disrupt a major military missions

ì Large organized groups or nation-states
intent on overthrowing a government

Fall 2018Secure Software Systems

7

Harm

ì Asset?
ì Information (typically)
ì Hardware and software (potentially)

ì Types of harm (the C-I-A aspects)
ì Damage to confidentiality (e.g., interception)
ì Damage to integrity (e.g., modification, fabrication)
ì Damage to availability (e.g., interruption)

Fall 2018Secure Software Systems

8

Def: A negative consequence to a system asset

Discussion

ì Papapavlo’s Bistro and Bar
ì Let’s say they contract with

opentable.com to enable
online reservations

ì What does the restaurant
risk in this relationship?
ì Confidentiality?
ì Integrity?
ì Availability?

Fall 2018Secure Software Systems

9

Vulnerabilities

ì Examples: Buffer overflow, code injection, XSS,
misconfiguration, bugs in access
control/authentication

Fall 2018Secure Software Systems

10

Def: An unintended aspect of a system (design,
implementation, or configuration) that can cause the
system to do something it shouldn't, or fail to do
something it should

Vulnerabilities

ì Databases:
ì NVD: https://nvd.nist.gov/

ì National Vulnerability Database
ì CVE: https://cve.mitre.org/

ì Common Vulnerabilities and Exposures

ì Ignoring vulnerabilities is risky
ì Weakest link is all a threat needs!

ì Assumptions are also vulnerabilities!
ì Assumptions about timing/sequence of events, failure

modes, message delivery, input format, etc…

Fall 2018Secure Software Systems

11

https://nvd.nist.gov/
https://cve.mitre.org/

Trust vs Trustworthy

ì A trusted component is assumed to satisfy a
security policy

ì A trustworthy component additionally is
accompanied by evidence that it satisfies the policy
ì Goal of security practitioners: transform trust into

trustworthiness

Fall 2018Secure Software Systems

12

Discussion

ì Papapavlo’s Bistro and Bar
ì Let’s say they contract with

opentable.com to enable
online reservations

ì What vulnerabilities might
threats exploit to cause
harm to Papapavlo’s?

Fall 2018Secure Software Systems

13

Countermeasures

ì Strategy:
ì Prevent: block attack or close vulnerability
ì Deter: make attack harder but not impossible
ì Deflect: make other targets more attractive
ì Mitigate: make harm less severe
ì Detect: as it happens or after the fact
ì Recover: undo harm

Fall 2018Secure Software Systems

14

Def: A defense that protects against attacks by
neutralizing either the threat or vulnerability involved

Types of Countermeasures

ì Physical: something tangible (walls, locks, guards)

ì Procedural: protocols for how people act
(laws, regulations, policies, contracts)

ì Technical: hardware and software (cryptography,
access control, passwords, intrusion detection
systems, ...)

Fall 2018Secure Software Systems

15

Technical Countermeasures

ì Isolation: restrict communication between
components (virtual machines, sandboxes,
processes, firewalls)

ì Monitoring: a program analyzes execution and
blocks bad things from happening (reference
monitor, intrusion detection system)

ì Recovery: detect and reverse effects of harm
(transactions, backups, key changes)

Fall 2018Secure Software Systems

16

Discussion

ì Papapavlo’s Bistro and Bar
ì Let’s say they contract with

opentable.com to enable
online reservations

ì What countermeasures
might be employed to
mitigate these
vulnerabilities?

Fall 2018Secure Software Systems

17

Beyond the Attack

Fall 2018Secure Software Systems

18

Attacks
are perpetrated by

threats
that inflict

harm
by exploiting

vulnerabilities
which are controlled by

countermeasures.

ì
Principles

Fall 2018Secure Software Systems

19

Security Approaches

ì Prevention: build systems that are completely free
of vulnerabilities

ì Risk management: invest wisely in
countermeasures

ì Deterrence through accountability: attribute
attacks to humans and legally prosecute

Fall 2018Secure Software Systems

20

Principles of Prevention

ì Accountability

ì Complete Mediation

ì Least Privilege

ì Failsafe Defaults

ì Separation of Privilege

ì Defense in Depth

ì Economy of Mechanism

ì Open Design

ì Psychological Acceptability

Fall 2018Secure Software Systems

21

Accountability

Fall 2018Secure Software Systems

22

Accountability

ì Authorization: mechanisms that govern whether actions
are permitted
ì Vault locks keep out most principals

ì Authentication: mechanisms that bind principals to
actions
ì Vault key enables specific principals

ì Audit: mechanisms that record and review actions
ì Vault security cameras monitor all principals

Fall 2018Secure Software Systems

23

Hold principals responsible for their actions

Complete Mediation

Fall 2018Secure Software Systems

24

Complete Mediation

ì Component that does the interception and
determination is the reference monitor

ì Related to Accountability

ì Restricts caching of information, including previous
decisions

Fall 2018Secure Software Systems

25

Every operation requested by a principal must be
intercepted and determined to be acceptable
according to the security policy

Least Privilege

ì Limits the damage that can result from accident or
malice

ì aka “need to know”

Fall 2018Secure Software Systems

26

Principals should be given the minimum privileges
necessary to accomplish their task

Failsafe Default

Fall 2018Secure Software Systems

27

Failsafe Defaults

ì The default answer is "no"
ì Say "yes" only when there is an explicit reason to do so

ì Principals who discover they don't have access will
complain

ì Attackers who discover they do have access won't
complain!

Fall 2018Secure Software Systems

28

Base decisions on the presence of privilege,
not the absence of prohibition

Separation of Privilege

Fall 2018Secure Software Systems

29

Separation of Privilege

ì Supports Least Privilege

ì In tension with usability: too many operations and
objects and principals

Fall 2018Secure Software Systems

30

Different operations should require different
privileges

Defense in Depth

Fall 2018Secure Software Systems

31

Defense in Depth

ì Complementary:
ì Independent: attack that compromises one

mechanism is unlikely to compromise others
ì Overlapping: attacks must compromise multiple

mechanisms to succeed

Fall 2018Secure Software Systems

32

Prefer a set of complementary mechanisms over a
single mechanism

Economy of Mechanism

Fall 2018Secure Software Systems

33

Economy of Mechanism

ì Easier to understand, construct, analyze
ì And thus less likely to have unknown vulnerabilities

ì Applies to any aspect of system, not just security

ì Trusted computing base (TCB): mechanisms that
implement the core security functionality
ì ...keep the TCB small

Fall 2018Secure Software Systems

34

Prefer mechanisms that are simpler and smaller

Economy of Mechanism

ì seL4 microkernel

Fall 2018Secure Software Systems

35

https://sel4.systems/

“The world's first operating-system kernel with an end-
to-end proof of implementation correctness and
security enforcement...”

A microkernel is small – not a full operating system!

Open Design

Fall 2018Secure Software Systems

36

Open Design

Fall 2018Secure Software Systems

37

Security shouldn't depend upon the secrecy of design
or implementation

/* efdtt.c Author: Charles M. Hannum <root@ihack.net> */
/* */
/* Thanks to Phil Carmody <fatphil@asdf.org> for additional tweaks. */
/* */
/* Length: 434 bytes (excluding unnecessary newlines) */
/* */
/* Usage is: cat title-key scrambled.vob | efdtt >clear.vob */
#define m(i)(x[i]^s[i+84])<<
unsigned char
x[5],y,s[2048];main(n){for(read(0,x,5);read(0,s,n=2048);write(1,s,n))if(s[y=s[13]
%8+20]/16%4==1){int i=m(1)17^256+m(0)8,k=m(2)0,j=m(4)17^m(3)9^k*2-
k%8^8,a=0,c=26;for(s[y]-=16;--
c;j*=2)a=a*2^i&1,i=i/2^j&1<<24;for(j=127;++j<n;c=c>y)c+=y=i^i/8^i>>4^i>>12,i=i>>8
^y<<17,a^=a>>14,y=a^a*8^a<<6,a=a>>8^y<<9,k=s[j],k="7Wo~'G_\216"[k&7]+2^"cr3sfw6v;
*k+>/n."[k>>4]*2^k*257/8,s[j]=k^(k&k*2&34)*6^c+~y;}}

https://www.cs.cmu.edu/~dst/DeCSS/Gallery/hannum-efdtt-source.txt

Open Design

ì Arguments for open design:
ì Secrets eventually come out: reverse engineering is

possible, employees move around
ì Making details public increases chance of identifying

and repairing vulnerabilities

Fall 2018Secure Software Systems

38

Security shouldn't depend upon the secrecy of design
or implementation

Open Design

ì Arguments against open design:
ì Secrecy supports Defense in Depth by making it

harder to find vulnerabilities
ì Lack of hard evidence that Linus' Law really holds

("given enough eyeballs, all bugs are shallow")
ì After identification, some vulnerabilities cannot

quickly or easily be repaired

Fall 2018Secure Software Systems

39

Security shouldn't depend upon the secrecy of design
or implementation

Psychological Acceptability

Fall 2018Secure Software Systems

40

Psychological Acceptability

ì Don't make operations (much) more difficult to
complete than if security mechanisms were absent

ì Don't make configuration difficult

ì Produce comprehensible error messages

ì Always a tradeoff between security and usability

Fall 2018Secure Software Systems

41

Minimize the burden of security mechanisms on
humans

