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Beyond the Attack

Content adapted from CS 5430 (System Security), Cornell University, Dr. Michael Clarkson



Schedule

This Week
ì Tue August 28

ì Intro lecture

ì Thur August 30
ì Project 1 Discussion
ì Security Policy & Aspects

Next Week
ì Tue September 4

ì Threats, Harm, and 
Vulnerabilities

ì Goals and Requirements

ì Thur September 6
ì Assurance
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https://www.forbes.com/sites/kevinanderton/2017/03/29/8-major-cyber-attacks-of-2016-infographic
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Attacks 
are perpetrated by 

threats 
that inflict 

harm 
by exploiting 

vulnerabilities 
which are controlled by 

countermeasures. 



Threats

ì What kinds of threats can you think of?
ì One example: 

Hackers driven by technical challenges 
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Def: A principal that can cause harm to assets



Threats

ì Inquisitive people, unintentional blunders 

ì Hackers driven by technical challenges 

ì Disgruntled employees or customers 
seeking revenge 

ì Criminals interested in personal financial 
gain, stealing services, or industrial 
espionage 

ì Organized crime with the intent of hiding 
something or financial gain 

ì Organized terrorist groups attempting to 
influence policy by isolated attacks 

ì Foreign espionage agents seeking to 
exploit information for economic, political, 
or military purposes 

ì Tactical countermeasures intended to 
disrupt specific weapons or command 
structures 

ì Multifaceted tactical information warfare
applied in a broad orchestrated manner to 
disrupt a major military missions 

ì Large organized groups or nation-states 
intent on overthrowing a government
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Harm

ì Asset?
ì Information (typically)
ì Hardware and software (potentially)

ì Types of harm (the C-I-A aspects)
ì Damage to confidentiality (e.g., interception) 
ì Damage to integrity (e.g., modification, fabrication) 
ì Damage to availability (e.g., interruption) 
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Def: A negative consequence to a system asset 



Discussion

ì Papapavlo’s Bistro and Bar
ì Let’s say they contract with 

opentable.com to enable 
online reservations

ì What does the restaurant 
risk in this relationship?
ì Confidentiality?
ì Integrity?
ì Availability?
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Vulnerabilities

ì Examples: Buffer overflow, code injection, XSS, 
misconfiguration, bugs in access 
control/authentication
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Def: An unintended aspect of a system (design, 
implementation, or configuration) that can cause the 
system to do something it shouldn't, or fail to do 
something it should 



Vulnerabilities

ì Databases:
ì NVD:  https://nvd.nist.gov/

ì National Vulnerability Database
ì CVE: https://cve.mitre.org/

ì Common Vulnerabilities and Exposures

ì Ignoring vulnerabilities is risky
ì Weakest link is all a threat needs!

ì Assumptions are also vulnerabilities!
ì Assumptions about timing/sequence of events, failure 

modes, message delivery, input format, etc…
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https://nvd.nist.gov/
https://cve.mitre.org/


Trust vs Trustworthy

ì A trusted component is assumed to satisfy a 
security policy 

ì A trustworthy component additionally is 
accompanied by evidence that it satisfies the policy 
ì Goal of security practitioners:  transform trust into 

trustworthiness 
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Discussion

ì Papapavlo’s Bistro and Bar
ì Let’s say they contract with 

opentable.com to enable 
online reservations

ì What vulnerabilities might 
threats exploit to cause 
harm to Papapavlo’s?
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Countermeasures

ì Strategy:
ì Prevent: block attack or close vulnerability
ì Deter: make attack harder but not impossible
ì Deflect: make other targets more attractive
ì Mitigate: make harm less severe
ì Detect: as it happens or after the fact
ì Recover: undo harm 
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Def: A defense that protects against attacks by 
neutralizing either the threat or vulnerability involved 



Types of Countermeasures

ì Physical: something tangible (walls, locks, guards) 

ì Procedural: protocols for how people act 
(laws, regulations, policies, contracts) 

ì Technical: hardware and software (cryptography, 
access control, passwords, intrusion detection 
systems, ...) 
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Technical Countermeasures

ì Isolation: restrict communication between 
components (virtual machines, sandboxes, 
processes, firewalls) 

ì Monitoring: a program analyzes execution and 
blocks bad things from happening (reference 
monitor, intrusion detection system) 

ì Recovery: detect and reverse effects of harm 
(transactions, backups, key changes) 
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Discussion

ì Papapavlo’s Bistro and Bar
ì Let’s say they contract with 

opentable.com to enable 
online reservations

ì What countermeasures 
might be employed to 
mitigate these 
vulnerabilities?
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Attacks 
are perpetrated by 

threats 
that inflict 

harm 
by exploiting 

vulnerabilities 
which are controlled by 

countermeasures. 
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Security Approaches

ì Prevention: build systems that are completely free 
of vulnerabilities 

ì Risk management: invest wisely in 
countermeasures 

ì Deterrence through accountability: attribute 
attacks to humans and legally prosecute 
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Principles of Prevention 

ì Accountability

ì Complete Mediation

ì Least Privilege

ì Failsafe Defaults

ì Separation of Privilege

ì Defense in Depth

ì Economy of Mechanism

ì Open Design

ì Psychological Acceptability
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Accountability
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Accountability

ì Authorization: mechanisms that govern whether actions 
are permitted
ì Vault locks keep out most principals

ì Authentication: mechanisms that bind principals to 
actions
ì Vault key enables specific principals

ì Audit: mechanisms that record and review actions 
ì Vault security cameras monitor all principals
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Hold principals responsible for their actions 



Complete Mediation 
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Complete Mediation 

ì Component that does the interception and 
determination is the reference monitor 

ì Related to Accountability 

ì Restricts caching of information, including previous 
decisions 
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Every operation requested by a principal must be 
intercepted and determined to be acceptable 
according to the security policy 



Least Privilege 

ì Limits the damage that can result from accident or 
malice 

ì aka “need to know”
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Principals should be given the minimum privileges 
necessary to accomplish their task 



Failsafe Default
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Failsafe Defaults 

ì The default answer is "no" 
ì Say "yes" only when there is an explicit reason to do so 

ì Principals who discover they don't have access will 
complain 

ì Attackers who discover they do have access won't 
complain! 
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Base decisions on the presence of privilege, 
not the absence of prohibition 



Separation of Privilege 
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Separation of Privilege 

ì Supports Least Privilege 

ì In tension with usability: too many operations and 
objects and principals 
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Different operations should require different 
privileges 



Defense in Depth
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Defense in Depth 

ì Complementary: 
ì Independent: attack that compromises one 

mechanism is unlikely to compromise others 
ì Overlapping: attacks must compromise multiple 

mechanisms to succeed 
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Prefer a set of complementary mechanisms over a 
single mechanism 



Economy of Mechanism 
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Economy of Mechanism 

ì Easier to understand, construct, analyze
ì And thus less likely to have unknown vulnerabilities

ì Applies to any aspect of system, not just security 

ì Trusted computing base (TCB): mechanisms that 
implement the core security functionality 
ì ...keep the TCB small 
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Prefer mechanisms that are simpler and smaller 



Economy of Mechanism 

ì seL4 microkernel
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https://sel4.systems/

“The world's first operating-system kernel with an end-
to-end proof of implementation correctness and 
security enforcement...”

A microkernel is small – not a full operating system!



Open Design
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Open Design
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Security shouldn't depend upon the secrecy of design 
or implementation 

/*     efdtt.c Author:  Charles M. Hannum <root@ihack.net>             */
/*                                                                         */
/*     Thanks to Phil Carmody <fatphil@asdf.org> for additional tweaks.    */
/*                                                                         */
/*     Length:  434 bytes (excluding unnecessary newlines)                 */
/*                                                                         */
/*     Usage is:  cat title-key scrambled.vob | efdtt >clear.vob */
#define m(i)(x[i]^s[i+84])<<
unsigned char
x[5],y,s[2048];main(n){for(read(0,x,5);read(0,s,n=2048);write(1,s,n))if(s[y=s[13]
%8+20]/16%4==1){int i=m(1)17^256+m(0)8,k=m(2)0,j=m(4)17^m(3)9^k*2-
k%8^8,a=0,c=26;for(s[y]-=16;--
c;j*=2)a=a*2^i&1,i=i/2^j&1<<24;for(j=127;++j<n;c=c>y)c+=y=i^i/8^i>>4^i>>12,i=i>>8
^y<<17,a^=a>>14,y=a^a*8^a<<6,a=a>>8^y<<9,k=s[j],k="7Wo~'G_\216"[k&7]+2^"cr3sfw6v;
*k+>/n."[k>>4]*2^k*257/8,s[j]=k^(k&k*2&34)*6^c+~y;}}

https://www.cs.cmu.edu/~dst/DeCSS/Gallery/hannum-efdtt-source.txt



Open Design

ì Arguments for open design:
ì Secrets eventually come out: reverse engineering is 

possible, employees move around 
ì Making details public increases chance of identifying 

and repairing vulnerabilities 
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Security shouldn't depend upon the secrecy of design 
or implementation 



Open Design

ì Arguments against open design:
ì Secrecy supports Defense in Depth by making it 

harder to find vulnerabilities 
ì Lack of hard evidence that Linus' Law really holds 

("given enough eyeballs, all bugs are shallow") 
ì After identification, some vulnerabilities cannot 

quickly or easily be repaired 
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Security shouldn't depend upon the secrecy of design 
or implementation 



Psychological Acceptability 
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Psychological Acceptability 

ì Don't make operations (much) more difficult to 
complete than if security mechanisms were absent 

ì Don't make configuration difficult

ì Produce comprehensible error messages 

ì Always a tradeoff between security and usability 
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Minimize the burden of security mechanisms on 
humans 


