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Content adapted from CS 5430 (System Security), Cornell University, Dr. Michael Clarkson



Schedule

This Week
ì Tue September 4

ì Beyond the Attacks
ì Goals and Requirements

ì Thur September 6
ì Goals and Requirements
ì Assurance

Next Week
ì Tue September 11

Thur September 13
ì Architectural Approaches 

to Security
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Project 1

ì For each group, discuss….
ì Team Members?
ì Selected application?
ì What does application do?
ì Why is security important to it?

ì Proposals due Thursday! (11:59pm)
ì Will provide go/no-go feedback this week

ì Chapter 1 due Tuesday Sept 18th (11:59pm)
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ì
Trivia
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CVE – Common Vulnerabilities
and Exposures

ì https://cve.mitre.org/

Fall 2018Secure Software Systems

5

“Common Vulnerabilities and Exposures (CVE®) is 
a list of common identifiers for publicly known cyber 
security vulnerabilities. Use of CVE IDs ensures 
confidence among parties when used to discuss or 
share information about a unique software 
vulnerability, provides a baseline for tool evaluation, 
and enables data exchange for cyber security 
automation.”

https://cve.mitre.org/


MITRE

ì Origins – Group of scientists/engineers: 

ì MIT Lincoln Laboratory

ì USAF SAGE Project - 1950’s project to combine 

multiple radars into single “national airspace” view

ì Computers, networking, algorithms, command-and-

control systems, etc…

ì Many decades of federal R&D dollars

ì Today

ì Non-profit engineering/security research 

corporation
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CVE

ì Q: Who can assign CVE IDs? 

ì Ans: Not just MITRE

ì CVE Numbering Authorities (CNA)

ì Bug bounty programs

ì National and Industry CERTs

(Computer Emergency Response Team)

ì Vendors/Projects

ì 73 in September 2017

ì https://cve.mitre.org/cve/cna.html
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CVE

ì Q: Is CVE a “vulnerability database”?

ì Ans: No – it’s a list of identifiers
(with a brief description)
ì Allows vulnerabilities databases to be linked 

together to produce security tools & services
ì CVE is missing information on:

ì Risk
ì Impact
ì How to fix
ì Detailed technical details
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NVD

ì Q: Where can I find a vulnerability database?

ì Ans: National Vulnerability Database
ì https://nvd.nist.gov/
ì https://nvd.nist.gov/general/nvd-dashboard
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CWE – Common Weakness Enumeration

ì https://cwe.mitre.org/

ì 705 listed as-of September 2017 
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“CWE™ is a community-developed list of common 
software security weaknesses. It serves as a common 
language, a measuring stick for software security tools, 
and as a baseline for weakness identification, 
mitigation, and prevention efforts.”

https://cwe.mitre.org/


CWE Examples

ì General Coding
ì CWE-457: Use of Uninitialized Variable 
ì …

ì Dynamic Memory
ì CWE-415: Double Free 
ì CWE-416: Use After Free 
ì …
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CWE Examples

ì Math
ì CWE-682: Incorrect Calculation (parent)
ì CWE-190: Integer Overflow or Wraparound
ì …

ì Race Conditions
ì CWE-362: Race Condition (parent) 
ì CWE-366: Race Condition Within a Thread 
ì CWE-367: Time-of-Check Time-of-Use (TOCTOU) 

Race Condition 
ì …
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CWE Examples

ì Buffer Overflow
ì CWE-119: Failure to Constrain Operations within the 

Bounds of a Memory Buffer (parent)
ì CWE-121: Stack-based Buffer Overflow 
ì CWE-122: Heap-based Buffer Overflow 
ì CWE-125: Out-of-bounds Read 
ì CWE-129: Unchecked Array Indexing 
ì CWE-131: Incorrect Calculation of Buffer Size 
ì CWE-193: Off-by-one Error 
ì …
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2011 Top CWE - Porous Defenses

ì Execution with Unnecessary 
Privileges - (250)

ì Improper Restriction of Excessive 
Authentication Attempts - (307)

ì Incorrect Authorization - (863)

ì Incorrect Permission Assignment 
for Critical Resource - (732)

ì Missing Authentication for 
Critical Function - (306)

ì Missing Authorization - (862)

ì Missing Encryption of Sensitive 
Data - (311)

ì Reliance on Untrusted Inputs in a 
Security Decision - (807)

ì Use of Hard-coded Credentials -
(798)

ì Use of a Broken or Risky 
Cryptographic Algorithm - (327)

ì Use of a One-Way Hash without a 
Salt - (759)

Fall 2018Secure Software Systems

14

https://cwe.mitre.org/data/index.html

https://cwe.mitre.org/data/index.html


ì
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Recap

ì Aspects of Security
ì Confidentiality, Integrity, Availability

ì Key Concepts
ì Harm, threat, vulnerability, attack, countermeasure

ì Principles
ì Accountability, least privilege, defense in depth, …
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Engineering Methodology

1. Functional Requirements

2. Threat Analysis

3. Harm Analysis

4. Security Goals

5. Feasibility Analysis

6. Security Requirements
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Functional Requirements (1)

ì Should be testable – 3rd party can determine if requirement is 
met

ì User stories – brief description of a single kind of interaction 
user can have with system
ì As a user I can action so that purpose

ì Examples from Course Management System (e.g. Canvas)
ì As a professor, I can create a new assignment by specifying 

its name, number of possible points, and due date
ì As a student, I can submit a file as a solution to an 

assignment

ì These stories reveal system assets
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Threat Analysis (2)

ì Identify threats of concern to system
ì Especially malicious, human threats
ì What kinds of attackers will system resist?
ì What are their motivations, resources, and 

capabilities?

ì Identify non-threats
ì Trusted hardware?
ì Trusted environment?

ì Physically secure machine room, only trusted system 
operators have access
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Harm Analysis (3)

ì Harm: Action adversely affects value of asset

ì Harm to: Confidentiality, Integrity, Availability

ì “Performing action on/to/with asset could cause 
harm”
ì “Stealing money could cause loss of revenue”
ì “Erasing account balances could cause loss of 

customers”
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Harm Triples

ì <action, asset, harm>
ì <theft, money, loss of revenue>
ì <erasure, account balance, loss of customer>

ì Methodology
ì Start with asset
ì Brainstorm: What actions could harm this asset?
ì Let CIA triad inspire you

Fall 2018Secure Software Systems

21



Example: GMS

ì Imagine Grade Management System (GMS)
ì Manages just the final grade for a course

ì Functional Requirements? (and assets?)

ì Threat Analysis?

ì Harm Analysis?
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Example: GMS

ì As a student, I can view my final grade

ì As a professor, I can view and change final grades 
for all students in my courses

ì As an administrator, I can add or remove students 
and professors to/from the course

ì Asset: Letter grade for each student
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Example: GMS

ì Students:
ì Motivations: Increase their own grade, lower others’ 

grades, learn others’ grades
ì Capabilities: Network access to system, physical access to 

other students’ computers, social engineering.   Limited 
computational or financial resources

ì Out of scope: Assume that threats cannot physically 
access any servers; professors and sysadmins are trusted
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Threat Analysis



Example: GMS

ì Performing action with asset could cause harm

ì Brainstorm some harm triples
<action, asset, harm>
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Harm Analysis



Security Goals (4)

ì “The system shall prevent/detect action on/to/with asset.”

ì Specify what not how

ì Examples
ì “The system shall prevent theft of money”
ì “The system shall prevent erasure of account balances”

ì Poor Goals
ì “The system shall use encryption to prevent reading of 

messages”
ì “The system shall use authentication to verify user 

identities”
ì “The system shall resist attacks”
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Feasibility Analysis (5)

ì Not all goals are feasible to achieve

ì Relax goals
ì “Prevent theft of items from a vault”

ì Too hard!
ì “Resist penetration for 30 minutes”

ì Realistic and testable
ì “Detect theft of items from a vault”

ì Realistic and testable
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Goals -> Requirements

ì Goals: What should never happen in any situation
ì Not testable

ì Requirements: What should happen in specific 
situations
ì Testable
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Security Requirements (6)

ì Constraint on functional requirements, in service of 
security goals

ì Example
ì Functional requirement: allow customers to cash checks
ì Security goal: Prevent loss of revenue through bad checks
ì Security requirement: 

ì Check must be drawn on bank where it’s being cashed 
(so funds can be verified), or

ì Customer must be account holder at bank and depositing 
funds in account (so funds could be reversed)
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Security Requirements (6)

ì Constraint on functional requirements, in service of 
security goals

ì Example
ì Functional requirement: Allow two users to chat using IM
ì Security goal: Prevent disclosure of message content to 

other users
ì Security requirement: 

ì (Poor) Contents of message cannot be read by anyone 
other than the two users

ì (Better) Message is encrypted by key shared with the two 
users
ì Don’t be too specific with technical details here
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Example: GMS

ì Functional Requirements
ì Students view grades
ì Professors view and change grades
ì Admins manage enrollment

ì Security goals?
ì “The system shall prevent/detect action on/to/with 

asset." 

ì Security Requirements?
ì Combine functional requirements with goals to invent 

constraints on system 
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Engineering Methodology

1. Functional Requirements

2. Threat Analysis

3. Harm Analysis

4. Security Goals

5. Feasibility Analysis

6. Security Requirements

Fall 2018Secure Software Systems

32



Iteration
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Invent new 
functional 

requirement

Introduce 
new asset

Invent new 
security goals

Invent new 
security 

requirements



Goals vs Requirements
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Goals Requirements

Broad scope Narrow scope

Apply to system Apply to individual functional
requirements

State desires State constraints

Not testable Testable

No design/implementation details Limited design/implementation 
details


