
ì
Secure Software Systems
CYBR 200 | Fall 2018 | University of the Pacific | Jeff Shafer

Goals and
Requirements

Content adapted from CS 5430 (System Security), Cornell University, Dr. Michael Clarkson

Schedule

This Week
ì Tue September 4

ì Beyond the Attacks
ì Goals and Requirements

ì Thur September 6
ì Goals and Requirements
ì Assurance

Next Week
ì Tue September 11

Thur September 13
ì Architectural Approaches

to Security

Fall 2018Secure Software Systems

2

Project 1

ì For each group, discuss….
ì Team Members?
ì Selected application?
ì What does application do?
ì Why is security important to it?

ì Proposals due Thursday! (11:59pm)
ì Will provide go/no-go feedback this week

ì Chapter 1 due Tuesday Sept 18th (11:59pm)

Fall 2018Secure Software Systems

3

ì
Trivia

Fall 2018Secure Software Systems

4

CVE – Common Vulnerabilities
and Exposures

ì https://cve.mitre.org/

Fall 2018Secure Software Systems

5

“Common Vulnerabilities and Exposures (CVE®) is
a list of common identifiers for publicly known cyber
security vulnerabilities. Use of CVE IDs ensures
confidence among parties when used to discuss or
share information about a unique software
vulnerability, provides a baseline for tool evaluation,
and enables data exchange for cyber security
automation.”

https://cve.mitre.org/

MITRE

ì Origins – Group of scientists/engineers:

ì MIT Lincoln Laboratory

ì USAF SAGE Project - 1950’s project to combine

multiple radars into single “national airspace” view

ì Computers, networking, algorithms, command-and-

control systems, etc…

ì Many decades of federal R&D dollars

ì Today

ì Non-profit engineering/security research

corporation

Fall 2018Secure Software Systems

6

CVE

ì Q: Who can assign CVE IDs?

ì Ans: Not just MITRE

ì CVE Numbering Authorities (CNA)

ì Bug bounty programs

ì National and Industry CERTs

(Computer Emergency Response Team)

ì Vendors/Projects

ì 73 in September 2017

ì https://cve.mitre.org/cve/cna.html

Fall 2018Secure Software Systems

7

https://cve.mitre.org/cve/cna.html

CVE

ì Q: Is CVE a “vulnerability database”?

ì Ans: No – it’s a list of identifiers
(with a brief description)
ì Allows vulnerabilities databases to be linked

together to produce security tools & services
ì CVE is missing information on:

ì Risk
ì Impact
ì How to fix
ì Detailed technical details

Fall 2018Secure Software Systems

8

NVD

ì Q: Where can I find a vulnerability database?

ì Ans: National Vulnerability Database
ì https://nvd.nist.gov/
ì https://nvd.nist.gov/general/nvd-dashboard

Fall 2018Secure Software Systems

9

https://nvd.nist.gov/
https://nvd.nist.gov/general/nvd-dashboard

CWE – Common Weakness Enumeration

ì https://cwe.mitre.org/

ì 705 listed as-of September 2017

Fall 2018Secure Software Systems

10

“CWE™ is a community-developed list of common
software security weaknesses. It serves as a common
language, a measuring stick for software security tools,
and as a baseline for weakness identification,
mitigation, and prevention efforts.”

https://cwe.mitre.org/

CWE Examples

ì General Coding
ì CWE-457: Use of Uninitialized Variable
ì …

ì Dynamic Memory
ì CWE-415: Double Free
ì CWE-416: Use After Free
ì …

Fall 2018Secure Software Systems

11

CWE Examples

ì Math
ì CWE-682: Incorrect Calculation (parent)
ì CWE-190: Integer Overflow or Wraparound
ì …

ì Race Conditions
ì CWE-362: Race Condition (parent)
ì CWE-366: Race Condition Within a Thread
ì CWE-367: Time-of-Check Time-of-Use (TOCTOU)

Race Condition
ì …

Fall 2018Secure Software Systems

12

CWE Examples

ì Buffer Overflow
ì CWE-119: Failure to Constrain Operations within the

Bounds of a Memory Buffer (parent)
ì CWE-121: Stack-based Buffer Overflow
ì CWE-122: Heap-based Buffer Overflow
ì CWE-125: Out-of-bounds Read
ì CWE-129: Unchecked Array Indexing
ì CWE-131: Incorrect Calculation of Buffer Size
ì CWE-193: Off-by-one Error
ì …

Fall 2018Secure Software Systems

13

2011 Top CWE - Porous Defenses

ì Execution with Unnecessary
Privileges - (250)

ì Improper Restriction of Excessive
Authentication Attempts - (307)

ì Incorrect Authorization - (863)

ì Incorrect Permission Assignment
for Critical Resource - (732)

ì Missing Authentication for
Critical Function - (306)

ì Missing Authorization - (862)

ì Missing Encryption of Sensitive
Data - (311)

ì Reliance on Untrusted Inputs in a
Security Decision - (807)

ì Use of Hard-coded Credentials -
(798)

ì Use of a Broken or Risky
Cryptographic Algorithm - (327)

ì Use of a One-Way Hash without a
Salt - (759)

Fall 2018Secure Software Systems

14

https://cwe.mitre.org/data/index.html

https://cwe.mitre.org/data/index.html

ì
Goals and Requirements

Fall 2018Secure Software Systems

15

Recap

ì Aspects of Security
ì Confidentiality, Integrity, Availability

ì Key Concepts
ì Harm, threat, vulnerability, attack, countermeasure

ì Principles
ì Accountability, least privilege, defense in depth, …

Fall 2018Secure Software Systems

16

Engineering Methodology

1. Functional Requirements

2. Threat Analysis

3. Harm Analysis

4. Security Goals

5. Feasibility Analysis

6. Security Requirements

Fall 2018Secure Software Systems

17

Functional Requirements (1)

ì Should be testable – 3rd party can determine if requirement is
met

ì User stories – brief description of a single kind of interaction
user can have with system
ì As a user I can action so that purpose

ì Examples from Course Management System (e.g. Canvas)
ì As a professor, I can create a new assignment by specifying

its name, number of possible points, and due date
ì As a student, I can submit a file as a solution to an

assignment

ì These stories reveal system assets

Fall 2018Secure Software Systems

18

Threat Analysis (2)

ì Identify threats of concern to system
ì Especially malicious, human threats
ì What kinds of attackers will system resist?
ì What are their motivations, resources, and

capabilities?

ì Identify non-threats
ì Trusted hardware?
ì Trusted environment?

ì Physically secure machine room, only trusted system
operators have access

Fall 2018Secure Software Systems

19

Harm Analysis (3)

ì Harm: Action adversely affects value of asset

ì Harm to: Confidentiality, Integrity, Availability

ì “Performing action on/to/with asset could cause
harm”
ì “Stealing money could cause loss of revenue”
ì “Erasing account balances could cause loss of

customers”

Fall 2018Secure Software Systems

20

Harm Triples

ì <action, asset, harm>
ì <theft, money, loss of revenue>
ì <erasure, account balance, loss of customer>

ì Methodology
ì Start with asset
ì Brainstorm: What actions could harm this asset?
ì Let CIA triad inspire you

Fall 2018Secure Software Systems

21

Example: GMS

ì Imagine Grade Management System (GMS)
ì Manages just the final grade for a course

ì Functional Requirements? (and assets?)

ì Threat Analysis?

ì Harm Analysis?

Fall 2018Secure Software Systems

22

Example: GMS

ì As a student, I can view my final grade

ì As a professor, I can view and change final grades
for all students in my courses

ì As an administrator, I can add or remove students
and professors to/from the course

ì Asset: Letter grade for each student

Fall 2018Secure Software Systems

23

Functional Requirements

Example: GMS

ì Students:
ì Motivations: Increase their own grade, lower others’

grades, learn others’ grades
ì Capabilities: Network access to system, physical access to

other students’ computers, social engineering. Limited
computational or financial resources

ì Out of scope: Assume that threats cannot physically
access any servers; professors and sysadmins are trusted

Fall 2018Secure Software Systems

24

Threat Analysis

Example: GMS

ì Performing action with asset could cause harm

ì Brainstorm some harm triples
<action, asset, harm>

Fall 2018Secure Software Systems

25

Harm Analysis

Security Goals (4)

ì “The system shall prevent/detect action on/to/with asset.”

ì Specify what not how

ì Examples
ì “The system shall prevent theft of money”
ì “The system shall prevent erasure of account balances”

ì Poor Goals
ì “The system shall use encryption to prevent reading of

messages”
ì “The system shall use authentication to verify user

identities”
ì “The system shall resist attacks”

Fall 2018Secure Software Systems

26

Feasibility Analysis (5)

ì Not all goals are feasible to achieve

ì Relax goals
ì “Prevent theft of items from a vault”

ì Too hard!
ì “Resist penetration for 30 minutes”

ì Realistic and testable
ì “Detect theft of items from a vault”

ì Realistic and testable

Fall 2018Secure Software Systems

27

Goals -> Requirements

ì Goals: What should never happen in any situation
ì Not testable

ì Requirements: What should happen in specific
situations
ì Testable

Fall 2018Secure Software Systems

28

Security Requirements (6)

ì Constraint on functional requirements, in service of
security goals

ì Example
ì Functional requirement: allow customers to cash checks
ì Security goal: Prevent loss of revenue through bad checks
ì Security requirement:

ì Check must be drawn on bank where it’s being cashed
(so funds can be verified), or

ì Customer must be account holder at bank and depositing
funds in account (so funds could be reversed)

Fall 2018Secure Software Systems

29

Security Requirements (6)

ì Constraint on functional requirements, in service of
security goals

ì Example
ì Functional requirement: Allow two users to chat using IM
ì Security goal: Prevent disclosure of message content to

other users
ì Security requirement:

ì (Poor) Contents of message cannot be read by anyone
other than the two users

ì (Better) Message is encrypted by key shared with the two
users
ì Don’t be too specific with technical details here

Fall 2018Secure Software Systems

30

Example: GMS

ì Functional Requirements
ì Students view grades
ì Professors view and change grades
ì Admins manage enrollment

ì Security goals?
ì “The system shall prevent/detect action on/to/with

asset."

ì Security Requirements?
ì Combine functional requirements with goals to invent

constraints on system

Fall 2018Secure Software Systems

31

Engineering Methodology

1. Functional Requirements

2. Threat Analysis

3. Harm Analysis

4. Security Goals

5. Feasibility Analysis

6. Security Requirements

Fall 2018Secure Software Systems

32

Iteration

Fall 2018Secure Software Systems

33

Invent new
functional

requirement

Introduce
new asset

Invent new
security goals

Invent new
security

requirements

Goals vs Requirements

Fall 2018Secure Software Systems

34

Goals Requirements

Broad scope Narrow scope

Apply to system Apply to individual functional
requirements

State desires State constraints

Not testable Testable

No design/implementation details Limited design/implementation
details

