
ì
Secure Software Systems
CYBR 200 | Fall 2018 | University of the Pacific | Jeff Shafer

Assurance

Content adapted from CS 5430 (System Security), Cornell University, Dr. Michael Clarkson

Schedule

This Week
ì Tue September 4

ì Beyond the Attacks
ì Goals and Requirements

ì Thur September 6
ì Assurance

Next Week
ì Tue September 11

Thur September 13
ì Architectural Approaches

to Security

Fall 2018Secure Software Systems

2

ì
Trivia

Fall 2018Secure Software Systems

3

Trusted Computing Base (TCB)

ì Set of all hardware + firmware + software components
that are critical to security
ì A vulnerability inside the TCB could jeopardize assets of

entire system
ì Examples in a commodity system?

ì A vulnerability outside the TCB cannot jeopardize any
more assets than those granted by security policy
ì Examples in a commodity system?

ì Want the TCB to be as small as possible!
ì Security evaluation focuses on TCB

Fall 2018Secure Software Systems

4

Access Control

ì Discretionary Access Control (DAC)
ì Ability to restrict access to objects based on the

identity of subjects and/or groups to which they
belong

ì Why discretionary? A subject (owner) with a certain
access permission can decide whether or not to pass
that permission on to other subjects

ì Example: File stored in OS has owner; owner can
elect to make file readable/writable to other users
or groups

Fall 2018Secure Software Systems

5

Access Control

ì Mandatory Access Control (MAC)
ì Any operation by any subject on any object is verified

against authorization rules (i.e. policy) before proceeding
ì The system (not the owner) decides whether or not to

grant access
ì Subject/user cannot override, only a central policy

administrator (“mandatory”)
ì Examples

ì Linux – AppArmor and SELinux
ì Windows – Integrity Levels
ì FreeBSD – TrustedBSD project

Fall 2018Secure Software Systems

6

ì
Assurance

Fall 2018Secure Software Systems

7

Recap

ì Aspects of Security
ì Confidentiality, Integrity, Availability

ì Key Concepts
ì Harm, threat, vulnerability, attack, countermeasure

ì Principles
ì Accountability, least privilege, defense in depth, …

ì Goals and Requirements
ì What the system should and should not do

Fall 2018Secure Software Systems

8

Assurance

ì How do you [developer] convince yourself that your
system is secure?

ì How do you convince others?

ì Assurance is evidence that system will not fail in
particular ways

ì Development process
(e.g. formal methods, deliberate fault injection, …)

ì Skill of developers

ì Experience with deployed systems

ì Evaluation is process of establishing assurance

ì Developers, QA teams, third-party testing

Fall 2018Secure Software Systems

9

Economics > Security

ì Companies race to ship innovative products sooner
than competitors
ì Little security or wrong security

ì Security is “bolted on” later in product
development as NEW FEATURE™!
ì Customers already locked in
ì Product already deployed (legacy code)
ì Architectural/design changes very challenging at this

stage

Fall 2018Secure Software Systems

10

Day 1

ì Integrate security functionality from the beginning
of development
ì During requirements engineering
ì During system design
ì During testing

ì Accumulate evidence of security as development
proceeds
ì Documentation
ì Analysis: By humans, by machines
ì Test suites

Fall 2018Secure Software Systems

11

ì
Evaluation

Fall 2018Secure Software Systems

12

Evaluation

1. Trusted Computer System Evaluation
ì “Orange Book”
ì 1983-2005

2. Common Criteria (CC)
ì 2009+

Fall 2018Secure Software Systems

13

ì
Evaluation – Orange Book

Fall 2018Secure Software Systems

14

A nice
relaxing read!

http://csrc.nist.gov/publications/history/dod85.pdf

Evaluation – Orange Book

ì Trusted Computer System Evaluation Criteria
ì US Department of Defense standard
ì Released in 1983, deprecated in 2005
ì Standards to evaluate computer systems used for

the processing of sensitive or classified data

ì Four divisions (D, C, B, A) that provide different
levels of trust for the evaluated system

Fall 2018Secure Software Systems

15

Evaluation – Orange Book

ì Division D – Minimal protection
ì System was evaluated, failed to meet higher

standards L
ì Rare certification

(why submit to evaluation if you know you will fail?)

Fall 2018Secure Software Systems

16

Evaluation – Orange Book

ì Division C – Discretionary protection
ì Discretionary protection applies to Trusted

Computer Base (TCB) with optional object (file,
directory, devices etc.) protection
C1 – Discretionary Security Protection
ì Identification and authentication
ì Separation of users and data
ì Discretionary Access Control (DAC) capable of

enforcing access limitations on an individual basis
ì Required System Documentation and user manuals

Fall 2018Secure Software Systems

17

Evaluation – Orange Book

ì Division C – Discretionary protection
ì C2 – Controlled Access Protection

ì All of C1, plus…
ì More finely grained DAC
ì Individual accountability through login procedures
ì Audit trails
ì Object reuse
ì Resource isolation
ì Certified OS’s: DEC VMS, Novell NetWare, IBM

OS/400, Windows NT

Fall 2018Secure Software Systems

18

Evaluation – Orange Book

ì Division B – Mandatory Protection
ì TCB protection systems are mandatory, not discretionary
ì B1 – Labelled Security Protection

ì Informal security policies, mandatory access control (multilevel
security)

ì Certified OS: HP-UX BLS, Cray Research Trusted Unicos 8.0,
Digital SEVMS, Harris CS/SX, SGI Trusted IRIX

ì B2 – Structured Protection
ì Formal security policies, clearly defined TCB, covert channel

analysis
ì B3 – Security Domains

ì Minimal TCB with complete mediation, automated intrusion
detection

ì Certified OS: Getronics/Wang Federal XTS-300

Fall 2018Secure Software Systems

19

Evaluation – Orange Book

ì Division A – Verified Protection
ì A1 – Verified Protection

ì Formal methods and proof of integrity of TCB
ì Certified OS’s:

ì Boeing MLS LAN
ì Gemini Trusted Network Processor (RTOS)

https://www.nist.gov/sites/default/files/documents/201
6/09/15/aesec_rfi_mls-rtos.pdf

ì Honeywell SCOMP
http://www.dtic.mil/dtic/tr/fulltext/u2/a229523.pdf
(actual 1985 report granting A1 status!)

Fall 2018Secure Software Systems

20

https://www.nist.gov/sites/default/files/documents/2016/09/15/aesec_rfi_mls-rtos.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a229523.pdf

Legacy of Orange Book

ì Evaluation didn’t succeed in commercial market
ì Too costly – customer had to pay
ì Too slow – Over 1 year to complete evaluation, by

which time software is out of date

ì “One size fits all” requirements for all systems

ì Unpopular security features mandated by higher
levels
ì In Usability vs Security, security won (here)

Fall 2018Secure Software Systems

21

Have you heard of most of those operating systems?

Legacy of Orange Book

ì Raised awareness of security for vendors and
governments
ì Major operating systems incorporated discretionary

access control – would they have done so without
government prodding?

ì Few systems incorporated multilevel security
specified by higher Orange Book divisions

ì Lead to international standards for evaluation

Fall 2018Secure Software Systems

22

ì
Evaluation – Common Criteria

Fall 2018Secure Software Systems

23

Common Criteria (CC)

ì Developed by the governments of Canada, France,
Germany, the Netherlands, the UK, and the U.S.

ì Unified existing standards
ì Orange Book (US)
ì ITSEC (Europe, 1990’s)
ì CTCPEC (Canada, 1990’s)

ì International standard: ISO/IEC 15408

Fall 2018Secure Software Systems

24

Common Criteria (CC)

ì Not one-size-fit-all like Orange Book

ì Protection Profile (PP) and Security Target (ST)
ì Customized security goals and requirements
ì Ex: For OS, for smartphone, for VPN client, …

ì Increasingly strict evaluation criteria for how well
system meets profile (PP) and target (ST)

ì Evaluation done by independent labs

Fall 2018Secure Software Systems

25

Protection Profile (PP)

ì Written for a category of products that meet specific
consumer needs
ì Smart cards? Network firewalls? Databases?
ì Hundreds written - http://www.commoncriteriaportal.org/

ì Implementation independent!

ì Security environment
ì Assumptions about intended usage
ì Threats of concern

ì Security goals and requirements

ì PP can be evaluated (complete, consistent, technically sound)

Fall 2018Secure Software Systems

26

http://www.commoncriteriaportal.org/

Security Target (ST)

ì Argues (w/ evidence) how the system meets the
security goals and requirements
ì Assurance argument

ì Created from scratch or based on multiple
protection profiles

ì Customized to a specific product or system
ì Target of Evaluation (TOE)

Fall 2018Secure Software Systems

27

Evaluation Assurance Level (EAL)

ì EAL1 – Functionally Tested
ì Analysis of specifications, documentation w/

independent testing
ì Some confidence desired but threat is not serious

ì EAL2 – Structurally Tested
ì Analysis of high-level design and developer’s testing

w/vulnerability analysis
ì Low level of assurance – used for legacy systems?

ì EAL3 – Methodically Tested and Checked
ì Requires use of developer environment controls and

configuration management

Fall 2018Secure Software Systems

28

Evaluation Assurance Level (EAL)

ì EAL4 – Methodically Designed, Tested, and Reviewed
ì Also analyze low-level design, some of the implementation
ì Developers must provide informal model of product or

security policy
ì Moderate level of assurance, probably highest likely to

achieve for pre-existing system
ì Common level for commercial OS

EAL5,6,7
ì Increasing demand for formal verification, penetration

testing, and independent testing

ì Higher EAL does not mean more secure, it means the
assurance in claimed security is based on stronger evidence

Fall 2018Secure Software Systems

29

Legacy of Common Criteria

ì “When presented with a security product, you must
always consider whether the salesman is lying or
mistaken.” – Ross Anderson

ì Does the PP specify the product you actually want?

ì Is the evaluation facility trustworthy?
ì Paid by developer
ì Controlled by governments

ì What vulnerabilities have been discovered after the
evaluation?

Fall 2018Secure Software Systems

30

Cost and Time

Fall 2018Secure Software Systems

31

GAO report on Information Assurance, 2006
GAO-06-392

http://www.gao.gov/new.items/d06392.pdf

http://www.gao.gov/new.items/d06392.pdf

ì
Verification and Testing

Fall 2018Secure Software Systems

32

Approaches to Reliability

ì Social
ì Code review
ì Pair programming

ì Methodological
ì Design patterns
ì Test-driven development
ì Version control
ì Bug tracking

ì Technological
ì Static analysis
ì Fuzzers

ì Mathematical
ì Sound type systems
ì Formal verification

Fall 2018Secure Software Systems

33

Less Formal – Techniques may
miss problems in programs

More Formal – Eliminate with
certainty as many problems as
possible

All methods should be used!
Even formal methods can
have holes, e.g. Did you prove
the right thing? Do your
assumptions match reality?

Testing vs Verification

ì Testing
ì Cost effective
ì Guarantee that the program is correct on tested

inputs and in tested environments

ì Verification
ì Expensive
ì Guarantee that program is correct on all inputs and

in all environments

Fall 2018Secure Software Systems

34

Formal Verification

ì Idea: Prove system correct w/r/t mathematical models

ì Typically done for small or safety-critical systems

ì Modern examples
ì CompCert – Verified C compiler

ì http://compcert.inria.fr/
ì seL4 – Verified microkernel OS

ì https://sel4.systems/
ì Ynot – Verified DBMS and web service

ì http://ynot.cs.harvard.edu

Fall 2018Secure Software Systems

35

http://compcert.inria.fr/
https://sel4.systems/
http://ynot.cs.harvard.edu/

Verification

ì Options for lightweight verification?

ì Type systems
ì Guarantee certain misbehaviors won’t occur
ì Good tradeoff of usability vs guarantees

ì Static analysis
ì Inspect source code or object/class files and look for

suspect patterns
ì Example: FindBugs for Java class files

Fall 2018Secure Software Systems

36

Bugs?

ì “Bugs” imply that something just wandered in

ì The truth

ì Fault: Result of human error
ì Implementation doesn’t match design, or design doesn’t

match requirements
ì End user might never notice

ì Failure: Violation of requirements
ì End user notices

Fall 2018Secure Software Systems

37

Human
Error Fault Failure

FindBugs

ì Looks for patterns in code that are likely faults and
(if un-fixed) are likely to cause failures

ì Categorizes and prioritizes bugs for presentation to
developer

ì FindBugs - http://findbugs.sourceforge.net/
ì Bug descriptions -

http://findbugs.sourceforge.net/bugDescriptions.html
ì Video presentation by Dr. Bill Pugh (creator) -

https://www.youtube.com/watch?v=8eZ8YWVl-2s

Fall 2018Secure Software Systems

38

http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/bugDescriptions.html
https://www.youtube.com/watch?v=8eZ8YWVl-2s

Testing

ì Goal is to expose existence of faults, so that they
can be fixed

ì Unit testing: isolated components

ì Integration testing: combined components

ì System testing: functionality, performance,
acceptance

Fall 2018Secure Software Systems

39

Testing

ì When do you stop testing?

ì Bad answer: when time is up

ì Bad answer: what all tests pass

ì Better answer: when methodology is complete
(code coverage, paths, boundary cases, etc.)

ì Future answer: statistical estimation says
Pr[undetected faults] is low enough (active
research)

Fall 2018Secure Software Systems

40

Penetration Testing

ì Testing for security

ì Experts attempt to attack
ì Internal vs. external
ì Overt vs. covert

ì Typical vulnerabilities exploited
ì Passwords (cracking)
ì Buffer overflows
ì Bad input validation
ì Race conditions / TOCTOU
ì Filesystem misconfiguration
ì Kernel flaws

Fall 2018Secure Software Systems

41

Fuzz Testing

ì Generate random inputs and feed them to
programs:
ì Crash? hang? terminate normally?
ì Of ~90 utilities in '89, crashed about 25-33% in

various Unixes
ì Crash implies buffer overflow potential

ì Since then, “fuzzing” has become a standard
practice for security testing

Fall 2018Secure Software Systems

42

Fuzz Testing

ì Testing strategy? Purely random only gets low
hanging fruit

ì Better testing:
ì Use grammar to generate inputs
ì Randomly mutate good inputs in small ways

ì Especially for testing of network protocols

ì Research: use analysis of source code to guide
mutation of inputs

Fall 2018Secure Software Systems

43

