
ì
Secure Software Systems
CYBR 200 | Fall 2018 | University of the Pacific | Jeff Shafer

Architectural
Approaches

to Security

Schedule

This Week
ì Tue September 11

Thur September 13
ì Architectural Approaches

to Security

Next Week
ì Tue, September 18

ì Architectural Approaches
to Security

ì Project 1, Chapter 1 Due

Fall 2018Secure Software Systems

2

Architectural Approaches to Security

ì Hardware
ì Protection Rings
ì Page level protection

(Virtual Memory)
ì Random Number

Generation
ì Cryptography instructions
ì Management Engine
ì Trusted Platform Module

ì Software
ì Virtualization
ì Containers
ì Sandboxing
ì ASLR

Fall 2018Secure Software Systems

3

Division between HW & SW is not this clear cut!
Many techniques have elements of both

ì

Fall 2018Secure Software Systems

4

Hardware Security Mechanisms

ì

Fall 2018Secure Software Systems

5

What can the Chip(s) do for Security?

Hardware Security Mechanisms

ì Basic Features
ì Protection Rings /

Privilege Levels
ì Page level protection

(Virtual memory)

ì Advanced Features
ì Random number

generation
ì Crypto instructions
ì Management Engine
ì Trusted Platform Module
ì Virtualization (discuss in

software section)

Fall 2018Secure Software Systems

6

Motivating Question: What protection/security mechanisms do
modern hardware platforms (x86-64, ARM, …) provide?

ì

Fall 2018Secure Software Systems

7

Protection Rings

Protection Rings

ì Concept: Domains with varying privilege levels
ì Privilege = ability to do actions

Fall 2018Secure Software Systems

8

Least Privileged

Most Privileged

Ring 0
Ring 1
Ring 2
Ring 3

Kernel

Device Drivers

Device Drivers
Applications

Protection Rings

ì Hardware protection mechanism
ì Ring 0 – most privileged
ì Ring n - least privileged

ì Goals
ì Protect system integrity
ì Protect OS kernel from device drivers / services
ì Protect device drivers / services from applications
ì Etc…

ì Program can not call code of higher privilege directly

Fall 2018Secure Software Systems

9

History of Protection Rings

ì Multics operating system
(Multiplexed Information and
Computing Service)
ì Pioneering operating system

released in 1969 – vintage!

ì Honeywell 6180 mainframe
supported 8 protection rings in
hardware
ì 0 – supervisor
ì 1-3 – System levels
ì 4-7 – User levels, customized

per application

Fall 2018Secure Software Systems

10

Protection Rings – x86-64

ì Hardware rings
ì Ring 0 – Kernel mode

(operating system)
ì Ring 1 – Privileged mode

(device drivers)
ì Only present in x86,

removed in x86-64
ì Ring 2 – Privileged mode

ì Only present in x86,
removed in x86-64

ì Ring 3 – User Mode
(applications)

ì Restrictions based on
protection ring
ì Which assembly

instructions (or instruction
options) are available?

ì What memory addresses
can I read/write?

ì What I/O ports can I
read/write?

ì What registers can I
read/write?

ì …

Fall 2018Secure Software Systems

11

x86-64 Q&A

ì Which ring would be part of the trusted computing
base? (TCB)
ì Ring 0 (kernel mode)

Fall 2018Secure Software Systems

12

x86-64 Q&A

ì Q: How does software know its current ring level?
ì A: CS (code selector) register indicates current

privilege level

ì Q: How does user code get the attention of system
code?
ì A: Code cannot call code of higher privilege directly.

Instead must use system calls (aka “gates”)
ì SYSENTER / SYSEXIT (32-bit x86)
ì SYSCALL / SYSRET (64-bit x86-64)

Fall 2018Secure Software Systems

13

x86-64 Q&A

ì Q: What instructions only work in ring-0?

ì A:
ì HLT – Halt CPU till next interrupt
ì INVLPG – Invalidate page entry in TLB
ì LIDT – Load Interrupt Descriptor Table
ì LGTD – Load Global Descriptor Table
ì RDMSR / WRMSR – Read/Write Model Specific

Reigster
ì MOV CR – Load or store control registers
ì VMENTER / VMEXIT – Enter/exit hypervisor

Fall 2018Secure Software Systems

14

ì Q: What can’t a process do in user mode? (ring-3)

ì A: Open files, send/receive network packets, print
to the screen, allocate memory, etc…

Fall 2018Secure Software Systems

15

Protection Rings – ARM

ì ARM doesn’t have protection

rings, but does have “privilege

levels” or “exception levels”

ì ARMv7 privilege levels

ì User/Application (PL0)

ì Operating System (PL1)

ì Hypervisor (PL2)

ì ARMv8 exception levels

ì User/Application (EL0)

ì Operating System (EL1)

ì Hypervisor (EL2)

ì Restrictions based on privilege

levels

ì Which assembly instructions

(or instruction options) are

available?

ì What memory addresses

can I access?

ì What I/O ports can I access?

ì …

Fall 2018Secure Software Systems

16

ì
Page Level Protection

Fall 2018Secure Software Systems

17

Uniprogramming

ì Back in the dark ages:
Uniprogramming
ì Single user process running

on computer L
ì User process can destroy

OS (read/write OS
memory) L

ì Multiprogramming
ì Multiple user processes J
ì Protection J

ì Uniprogramming physical
memory map:

Fall 2018Secure Software Systems

18

OS

User Process

Max

0

Multiprogramming

Fall 2018Secure Software Systems

19

Multiple address spaces exist on same computer system

AS1

AS1

AS2

Logical View Physical View

Max

0

Max

0

Max

0

Max

0

Multiprogramming Design Requirements

ì Sharing
ì Multiple processes coexist in main memory

ì Transparency
ì Processes are not aware that memory is shared
ì Processes can run regardless of the number or locations in

physical memory of other processes

ì Protection
ì Cannot access data of OS or other processes

ì Performance
ì Fast (accelerated by hardware?)
ì Does not waste memory (fragmentation = bad)

Fall 2018Secure Software Systems

20

Multiprogramming Design: Segmentation

ì Segmentation is a system where….

Fall 2018Secure Software Systems

21

Skip!
Used on Intel 8086 and 80286 processors

(Know that there was a legacy design, and the legacy
design still has traces in modern design/terminology)

Multiprogramming Design: Paging

ì Divide physical and
virtual memory into
fixed-size pages

ì Page = 4kB block of
memory
ì Assign pages to

processes

ì Advantages
ì Eliminates external

fragmentation
ì Enables fine grain

sharing
ì Only allocate memory

that will be used

Fall 2018Secure Software Systems

22

Paging

ì Paging optimizations?
ì Super page / huge page / large page
ì 2MB or 1GB in x86-64
ì 64kB, 1MB, 16MB in ARMv7
ì Reduces amount of translation metadata needed

Fall 2018Secure Software Systems

23

Memory Address Translation

ì Map program-generated address (virtual address)
to hardware address (physical address)
ì Done dynamically at runtime
ì Done at the assembly code level
ì Done at every memory access (read or write)

ì Accelerated by hardware (e.g. Translation Lookaside
Buffer – TLB) using data structures that are
managed by operating system
ì Hardware + Software = Virtual Memory system

Fall 2018Secure Software Systems

24

Memory Address Translation

Fall 2018Secure Software Systems

25

Assembly
Instructions
(User-Level
Program)

Segmentation
Unit

Logical
Addresses

Linear
Addresses Paging Unit Physical

Addresses

x86 CPU with paging enabled

http://duartes.org/gustavo/blog/post/memory-translation-and-segmentation/

Northbridge

RAM

http://duartes.org/gustavo/blog/post/memory-translation-and-segmentation/

Fall 2018Secure Software Systems

26

Fall 2018Secure Software Systems

27

Memory Address Translation

ì Page Table
ì Data structure storing virtual address->physical

address mapping
ì Consulted on every memory access!
ì Not one table, but a hierarchical sequence of tables

ì Translation Lookaside Buffer (TLB)
ì Hardware cache to accelerate page table lookups

Fall 2018Secure Software Systems

28

Security

ì Q: How does this impact security?

ì A: Process X will only* be able to get virtual
addresses for memory assigned to it!
ì Hardware will translate these virtual addresses to

physical addresses that are only assigned to that
process

ì (*) Process can ask operating system for greater
memory access, e.g. creating a memory region that
can be shared between multiple processes

Fall 2018Secure Software Systems

29

Security

ì Present bit – Is there a mapping to a valid physical
page?

ì Read/write/execute bits

ì User/Supervisor bit – Can this page be accessed in
user mode? (Ring 3)
ì User process can not read kernel memory

Fall 2018Secure Software Systems

30

Protection bits in page table: Checked by hardware
(MMU) on each memory access

http://hypervsir.blogspot.com/2014/10/introduction-on-hardware-security.html

http://hypervsir.blogspot.com/2014/10/introduction-on-hardware-security.html

Security

ì XD – eXecute Disable / NX – No-eXecute (Intel)
XN – eXecute-Never (ARM)
ì Can we execute code from this page? (or is it only

data?)
ì Aka Windows Data Execution Prevention (DEP)
ì Useful to stop buffer overflows turning (easily) into

exploits

Fall 2018Secure Software Systems

31

Protection bits in page table: Checked by hardware
(MMU) on each memory access

Security

ì SMAP – Supervisor Mode Access Protection (Intel)
SMEP – Supervisor Mode Execution Protection (Intel)
PAN – Privileged Access Never (ARM)
PXN – Privileged eXecute Never (ARM)
ì Can be used to block access or execution to user-space pages while

running in privileged mode (i.e. restrict what the kernel can do!)
ì Q: Why do we want to limit the kernel?
ì Ans: What if the attack fills a user-space region with malicious code

and tricks the kernel into accessing a pointer to it?

Fall 2018Secure Software Systems

32

Protection bits in page table: Checked by hardware
(MMU) on each memory access

ì

Fall 2018Secure Software Systems

33

Random Number Generation

Random Number Generation

ì Will talk at length about importance of random
number (entropy) generation, and many potential
methods, in cryptography section of course

ì Discuss hardware method today

Fall 2018Secure Software Systems

34

Motivating Question: How do I get a good random
number when computer hardware is deterministic?

Random Number Generators

ì Produce a sequence of numbers with following
properties:
ì New value must be statistically independent of

previous value
ì Particular values should not be more or less likely

ì Distribution of numbers is uniformly distributed
ì Cannot have some values more or less likely

ì Sequence is unpredictable
ì Cannot guess next value based on current or past

values
ì Cannot guess previous values based on current value

Fall 2018Secure Software Systems

35

x86 Randomness

ì Other desired features for a hardware
implementation?
ì Fast! (can produce many random numbers quickly)
ì Secure against attackers (cannot observe/modify

underlying state)

ì Implementations
ì Intel Digital Random Number Generator (DRNG)

ì https://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software
_Implementation_Guide_final_Aug7.pdf

ì Introduced in Ivy Bridge architecture
ì AMD Secure Random Number Generator (RNG)

Fall 2018Secure Software Systems

36

https://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software_Implementation_Guide_final_Aug7.pdf

Intel DRNG

ì Idea: Break key digital design rule of “Circuit should always be in known
state”. Metastability is a feature!

ì What happens when transistors are ON? And then OFF?

Fall 2018Secure Software Systems

37

https://spectrum.ieee.org/computing/hardware/behind-intels-new-randomnumber-generator

https://spectrum.ieee.org/computing/hardware/behind-intels-new-randomnumber-generator

Intel DRNG

ì Hardware produces 1 random bit per clock cycle

ì Scale up with parallel circuits for multiple random bits
per cycle

ì Q: Is this sufficient?

ì A: No – each inverter circuit is not identical when
fabricated at scale
ì What if some prefer 0’s more than 1’s?

ì Bias! L Lacking a uniform distribution
ì Need a solution that can be certified as meeting NIST

standards

Fall 2018Secure Software Systems

38

Intel DRNG

Fall 2018Secure Software Systems

39

• https://spectrum.ieee.org/computing/hardware/behind-intels-new-randomnumber-generator

• https://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software_Imple
mentation_Guide_final_Aug7.pdf

https://spectrum.ieee.org/computing/hardware/behind-intels-new-randomnumber-generator
https://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software_Implementation_Guide_final_Aug7.pdf

Intel DRNG

ì RDSEED instruction

ì Purpose: Seed a software PRNG (pseudo-random
number generator) with arbitrary-length stream of
bits

ì Produced by conditioner circuit (not directly from
raw inverter circuits that toggle based on thermal
noise)

ì Slower than next instruction, RDRAND

Fall 2018Secure Software Systems

40

Intel DRNG

ì RDRAND instruction

ì Purpose: Generate random 16, 32, or 64-bit
number for use in software applications

ì Warning: Instruction might (rarely!) fail if random
value not available– Must check the CF (carry flag)
to make verify result before using. Read the docs!
ì Any wrapped API on this instruction would handle

retrying automatically for you

Fall 2018Secure Software Systems

41

Intel DRNG

ì RDRAND generation method
1. Hardware entropy source (2 256-bit numbers)
2. Advanced Encryption Standard (AES) conditioner

produces single 256-bit entropy sample
3. Deterministic random bit generator produces

samples for RDRAND from hardware seed
1. This allows RDRAND to be much faster than the

underlying hardware generator, which runs at fixed
rate

2. Hardware seed replaced every 511 sample

Fall 2018Secure Software Systems

42

Trust

ì Risk – Do we trust the hardware
implementation? (black box,
impossible to audit/verify)
ì Critical part of trusted computing

base
ì Serious concerns in Linux, FreeBSD

development community
ì Are we sure that the NSA hasn’t

influenced these hardware designs?
ì Are conspiracy theorists paranoid

or prescient?

ì Consensus – Hardware entropy
should not be the only source of
randomness in the system
ì /dev/random in Linux

Fall 2018Secure Software Systems

43

Aside: Linux /dev/random

ì Q: Other sources of entropy for Linux /dev/random?

ì A: Kernel has variety of “environmental noise” factors
that are mixed together. SHA hash of “entropy pool”
ì Inter-interrupt timings

add_interrupt_randomness()
ì Input layer interrupt timing (e.g. inter-keyboard)

add_input_randomness()
ì Disk seek time per-disk/per-request – not good for SSDs!

add_disk_randomness()
ì Serial numbers / Ethernet MAC addresses – only for

initialization of pool! add_device_randomness()

Fall 2018Secure Software Systems

44

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/random.c

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/random.c

Assurance – Intel DRNG

1. Compliant with Standards (Who verified this?)
1. NIST SP 800-90A (2015) - “Recommendation for Random Number

Generation Using Deterministic Random Bit Generators”

2. FIPS 140-2 (2002) – “Security Requirements for Cryptographic Modules”
NIST standard for cryptography modules with HW & SW components

3. ANSI X9.82 (2006) – “Random Number Generation”

2. Third-party Review
1. Jun, Benjamin; Kocher, Paul (1999-04-22). "The Intel Random Number

Generator". Cryptography Research, Inc.
http://www.cryptography.com/public/pdf/IntelRNG.pdf

2. Hamburg, Mike; Kocher, Paul; Marson, Mark (2012-03-12). "Analysis of Intel's
Ivy Bridge Digital Random Number Generator". Cryptography Research, Inc.
https://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.p

df

Fall 2018Secure Software Systems

45

http://www.cryptography.com/public/pdf/IntelRNG.pdf
https://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf

ì

Fall 2018Secure Software Systems

46

Cryptography Instructions

Cryptography Instructions

ì Whines. “Cryptography is slow – can’t we make it
faster?”

Fall 2018Secure Software Systems

47

Cryptography Instructions

ì AES Instruction Set
ì Assembly instructions added in 2008 by Intel and

AMD
ì Accelerate AES (Advanced Encryption Standard)

encryption and decryption
ì Similar functionality in ARM via Security System

Fall 2018Secure Software Systems

48

AESENC, AESENCLAST, AESDEC,
AESDECLAST, AESKEYGENASSIST,
AESIMC, PCLMULQDQ

Cryptography Instructions

ì SHA Extensions
ì Assembly instructions added in 2016 by Intel and

AMD
ì Secure Hash Algorithm (SHA)
ì Accelerate SHA-1 and SHA-256 calculations

Fall 2018Secure Software Systems

49

SHA1RNDS4, SHA1NEXTE, SHA1MSG1, SHA1MSG2
SHA256RNDS2, SHA256MSG1, SHA256MSG2

Cryptography Instructions

ì Q: Should I be writing inline assembly code to use
these instructions?

ì A: No! Your crypto library (which you didn’t write
yourself) should use these acceleration techniques
ì But you may want to consider availability of

hardware acceleration and performance when
weighing tradeoffs between crypto algorithms

Fall 2018Secure Software Systems

50

ì
Trusted Computing

Fall 2018Secure Software Systems

51

Attacks

ì Many attacks are challenging for conventional software to
detect & address

ì Unauthorized software running on computer

ì Root kits / Boot sector / BIOS virus

ì Theft of cryptographic keys

ì If I have read access to your disk, I can steal your private keys

ì Impersonation attacks?

ì Data theft?

ì Users behaving badly
(or software running under their privileges)

ì Super-user / abuse of privilege attacks

Fall 2018Secure Software Systems

52

Trusted Computing

ì Goal: Build computer systems that
ì Strongly identify themselves (uniquely)
ì Strongly identify their current configuration and

running software

ì Identity
ì Hardware identity will be based on public-key

cryptography
ì Software identity will be based on cryptographic

hashes of program byte code

Fall 2018Secure Software Systems

53

Trustworthy State

ì Take a measurement (cryptographic hash) of each
component that contributes to platform state
ì Firmware? Kernel? Library? Application binary?

Configuration file?

ì Administrator can use measurements to decide if
platform is in a trustworthy state
ì Same state as last boot time?
ì Using components without known vulnerabilities?
ì Using components approved by administrator?

ì Obtain measurements in hardware
(which is hard to alter)

Fall 2018Secure Software Systems

54

Trusted Computing

ì ‘Trusted Computing’ developed by the Trusted Computing Group
ì Founding members: Microsoft, HP, IBM, Intel, AMD
ì Current members: Cisco, Lenovo, Infineon, Juniper Networks, many

more…
ì https://trustedcomputinggroup.org/

ì Proposed six technology concepts in 2001 v1.0 spec release
1. Endorsement key
2. Secure input & output
3. Memory curtaining / protected execution
4. Sealed storage
5. Remote attestation
6. Trusted Third Party (TPP)

Fall 2018Secure Software Systems

55

https://trustedcomputinggroup.org/

Trusted Computing

Endorsement Key
ì 2048-bit RSA public/private

key pair created at
manufacture time

ì Fixed in hardware, never
leaves the chip

Secure Input & Output
ì Control where data (audio,

video, files…) are sent to

Fall 2018Secure Software Systems

56

Trusted Computing

Memory Curtaining
ì Provides full isolation of

sensitive memory areas
(e.g. locations of
cryptographic keys)

ì Operating System access to
curtained memory is limited

Sealed Storage
ì Protects private information

by binding it to platform
configuration information
(i.e. hardware and software
being used)
ì e.g. can only decrypt files

on specific hardware
devices

Fall 2018Secure Software Systems

57

Trusted Computing

Remote Attestation
ì Verifies to remote parties

that specific software is
running on computer
ì And that software is not

tampered with

Trusted Third Party
ì Alice wants to assure Bob

that she is running un-
tampered hardware and
software
ì But she doesn’t want to

reveal her unique
identifying information to
Bob (i.e. wants anonymity)

ì Idea: Trusted Third Party to
vouch for Alice

Fall 2018Secure Software Systems

58

Use Case – Authenticated Boot

ì Keep a tamper-evident log of boot process

ì Power on
ì Compute cryptographic hash of boot ROM, write to

log, run boot ROM
ì Compute cryptographic hash of next stage of boot

process, write to log, run stage
ì Repeat until full OS is loaded

ì Log provides history of exactly what software was
loaded on the machine

Fall 2018Secure Software Systems

59

Use Case – Digital Rights Management

ì Sealed storage prevents using from opening file
with unauthorized computer

ì Remote attestation ensures that only media
company approved software players are loaded

ì Curtained memory ensures that decrypted media
file cannot be copied out of memory

ì Secure Input/Output ensures copy of decrypted file
cannot be captured from audio/video devices

Fall 2018Secure Software Systems

60

Controversy

ì Hardware is not only secured for its owner, but also secured

against its owner.

ì “Treacherous Computing” –

Richard Stallman (GNU, Free Software Foundation)
https://www.gnu.org/philosophy/can-you-trust.html

ì Examples (circa 2003)

ì Can “Internet Explorer-only” websites force you to attest

that you are running IE?

ì Can Microsoft file sharing servers force you to attest that you

are running MS clients, not open source Samba clients?

ì Can you trust the hardware vendors providing the trusted

computing platform?

Fall 2018Secure Software Systems

61

https://www.gnu.org/philosophy/can-you-trust.html

Controversy

ì Microsoft Palladium (aka Next-Generation Secure Computing Base)

ì Parallel Windows architecture to add trusted mode / secure paths alongside
untrusted legacy paths. Announced in 2002

ì Consumer reaction was “mixed”

ì A plot to take over cyberspace?

ì A plot to keep users from running any software not personally approved by Bill
Gates?

ì http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html

ì Developed over a decade, but cancelled prior to release of Windows Vista

ì Surviving elements

ì BitLocker disk encryption

ì Measured Boot (Windows 8)

ì Device Guard (Windows 10)

Fall 2018Secure Software Systems

62

http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html

Modern Computing

ì So is the trusted computing mindset dead?

ì Can I run any OS I want on my iPhone or iPad?
ì How is this enforced?

ì Can I run any application I want on my iPhone?
ì How is this enforced?

ì Can’t run Linux and OpenOffice on iPad hardware

Fall 2018Secure Software Systems

63

ì
Trusted Platform Module

Fall 2018Secure Software Systems

64

Trusted Platform Module

ì Key security challenge: knowing exactly what
software is running now (so that computing
platform is in defined state)
ì Must monitor boot process
ì Must provide an anchor for “Root of Trust”
ì Must have safe place to take measurements from
ì Must be able to report measurements to 3rd party

(attestation)

Fall 2018Secure Software Systems

65

Trusted Platform Module

ì Current implementation of Trusted Computing concepts
ì Standardized in 2009 – ISO/IEC 11889

ì Updated in 2014 (v2.0)

ì Ideally a dedicated microcontroller (e.g. hardware)

ì Features

ì Random number generator

ì Cryptographic key generator

ì Remote attestation of HW/SW

ì Binding / Sealing data

Fall 2018Secure Software Systems

66

Trusted Platform Module v1.2

Fall 2018Secure Software Systems

67

Implementations

ì Full hardware
ì Discrete TPM
ì Integrated TPM

ì Software
ì Firmware TPM
ì Software TPM
ì Virtual TPM

ì Confidence may vary with
implementation type

Fall 2018Secure Software Systems

68

Misconceptions

ì TPM does not measure, monitor, or control anything
ì Passive component in system
ì Measurements are made by host software and sent to

TPM
ì Cannot alter execution flow of system

ì TPM does not perform bulk encryption
(e.g. full disk encryption)

ì Open specification / Open API
ì Trusted Computing Group

Fall 2018Secure Software Systems

69

Applications

ì Google Chromebooks
ì Verified Boot – provides cryptographic assurance

that only Google-approved code is running
ì Encrypted store – each user of Chromebook has

private encrypted data store – keys are protected by
TPM

ì https://chrome.googleblog.com/2011/07/chromebo
ok-security-browsing-more.html

Fall 2018Secure Software Systems

70

https://chrome.googleblog.com/2011/07/chromebook-security-browsing-more.html

Applications

ì iPhones / iPads / TouchID
ì Apple uses a “Secure Enclave” co-processor for

security critical functions
ì Similar in concept to TPM, but proprietary

Fall 2018Secure Software Systems

71

ì
Management Engines

Fall 2018Secure Software Systems

72

How do you keep your computer secure?

ì Key tip: Run the latest version of software (with all
security fixes)
ì You might only have days (hours?) between a

security bug being fixed and attackers actively
exploiting on the Internet

ì Keep Windows up-to-date

ì Keep Office up-to-date

ì Keep Chrome up-to-date

Is this all the software we need to worry about?
Fall 2018Secure Software Systems

73

What about the hidden computer
inside your computer?

ì Intel™ Management Engine (ME)

ì Completely independent system embedded in Intel
platforms
ì Has its own processor and memory
ì Has its own operating system (proprietary, signed)
ì Runs its own programs (proprietary, signed)
ì Direct access to memory, screen, keyboard, network

ì Works if computer has no operating system install

ì Works if computer is powered off
(but still plugged into power and network)

Fall 2018Secure Software Systems

74

Management Engines

ì Remote management functionality
ì Remote power up/power down – WOL
ì Remote boot (i.e. boot from remote disk)
ì Console redirection (serial over LAN)
ì Keyboard, video, mouse (KVM) over network
ì Network monitoring/filtering
ì Access hardware asset information
ì Protected audio/video path for DRM-protected

media

Fall 2018Secure Software Systems

75

Your Computer

Ethernet

Operating
System

(Windows)

Management
Engine (MB)

Can intercept data
before it reaches

CPU!

Ethernet
NIC

IO
Controller

Hub

Fall 2018Secure Software Systems

76

Management Engines

ì Examples
ì Intel Active Management Technology (AMT)

vPro-enabled processors
ì AMD Secure Processor

(Formerly Platform Security Processor – PSP)

Fall 2018Secure Software Systems

77

Security Challenge

ì CVE-2017-5689
https://nvd.nist.gov/vuln/detail/CVE-2017-5689
ì “An unprivileged local attacker could provision

manageability features gaining unprivileged network or
local system privileges”

ì Active Management (AMT) module - part of
Management Engine

ì Allows remote administrator to interact with
keyboard/screen

ì Supposed to require a password for access, but you can
send a blank password instead!

Fall 2018Secure Software Systems

78

https://nvd.nist.gov/vuln/detail/CVE-2017-5689

Security Challenge

ì Data exfiltration technique
nicknamed PLATINUM

ì Evades firewalls and other
traditional network
monitoring tools

ì Uses AMT-provided virtual
serial port

Fall 2018Secure Software Systems

79

https://arstechnica.com/information-technology/2017/06/sneaky-hackers-use-intel-management-tools-to-bypass-windows-firewall/
https://blogs.technet.microsoft.com/mmpc/2017/06/07/platinum-continues-to-evolve-find-ways-to-maintain-invisibility/

https://arstechnica.com/information-technology/2017/06/sneaky-hackers-use-intel-management-tools-to-bypass-windows-firewall/
https://blogs.technet.microsoft.com/mmpc/2017/06/07/platinum-continues-to-evolve-find-ways-to-maintain-invisibility/

ì

Fall 2018Secure Software Systems

80

Software Security Mechanisms

Software Security Architectures

ì Basic Features
ì Process Isolation

ì Advanced Features
ì SELinux
ì Virtualization
ì Containers
ì Sandboxes
ì DEP
ì ASLR

Fall 2018Secure Software Systems

81

Motivating Question: What architectures can we build in software
on top of underlying hardware platform?

ì
Process Isolation

Fall 2018Secure Software Systems

82

Process Isolation

Fall 2018Secure Software Systems

83

Resource Limitation / Isolation Enforced By
Memory Cannot access memory of other processes Virtual memory system

(CPU+OS)
CPU Execution may be paused or throttled at

any time. No control over scheduling.
Pre-emptive multitasking
(CPU+OS)

Disk I/O Access may be granted, denied, or
throttled at any time.

Operating System

Network I/O Access may be granted, denied, or
throttled at any time.

Operating System

Runtime Each process has separate file descriptors,
socket descriptors, …

Operating System

Hardware
(general)

No direct access to hardware Operating System

Process Isolation

ì What can I do as a user process?
ì Run user-mode assembly instructions
ì Read/write to addresses within my virtual memory space
ì Anything else requires asking the kernel (via syscall)

ì Kernel must be part of trusted computing base for
process isolation to be successful

ì Assuming we trust the kernel, what else can it do for us
security-wise beyond these standard features?

Fall 2018Secure Software Systems

84

Protection in Linux

1. fork() + setuid() + exec()

2. chroot()

3. seccomp()

4. prctl()

5. SELinux

6. Namespaces

Fall 2018Secure Software Systems

85

http://nmav.gnutls.org/2015/06/software-isolation-in-linux_15.html

http://nmav.gnutls.org/2015/06/software-isolation-in-linux_15.html

Protection in Linux – fork/setuid/exec()

ì Create a new process with separate memory space

ì fork() – create a child process by duplicating the
calling process

ì setuid() – set the user ID of the new process

ì exec() – replaces the current process with new
process image

ì Standard feature of Unix-like operating systems for
decades

Fall 2018Secure Software Systems

86

Protection in Linux – chroot()

ì Change the apparent root directory available to the
currently running process and its children

ì Files and commands above this point on the tree
are no longer accessible

ì Standard feature of Unix-like operating systems for
decades

Fall 2018Secure Software Systems

87

Protection in Linux – seccomp()

ì Filter (limit) system calls that are available to process
ì Reduces the kernel attack surface!
ì List of Linux 64-bit syscalls:

http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

ì Management library
https://github.com/seccomp/libseccomp

ì Example: only allow read()/write()/ioctl()
syscalls but nothing else
ì If malicious code is injected into our process, it will be

limited in what it can do

Fall 2018Secure Software Systems

88

http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://github.com/seccomp/libseccomp

Protection in Linux – seccomp()

Fall 2018Secure Software Systems

89

#include <seccomp.h>

scmp_filter_ctx ctx;
ctx = seccomp_init(SCMP_ACT_ERRNO(EPERM))
assert(ctx == 0);

assert(seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(read), 0) == 0);
assert(seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(write), 0) == 0);
assert(seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(ioctl), 1,
SCMP_A1(SCMP_CMP_EQ, (int)SIOCGIFMTU)) == 0);

assert(seccomp_load(ctx) == 0);

What does assert() do?

return -1 and set errno to EPERM
if unpermitted syscall run

Protection in Linux – seccomp()

ì Challenge: What syscalls does my program need?
ì Tedious to find and tedious to enumerate
ì Tip: Use strace utility to see syscalls, along with their

arguments and return values
ì Be careful of syscalls only used for error conditions, or

different syscalls in 32 and 64-bit code

Fall 2018Secure Software Systems

90

$ strace ls
execve("/bin/ls", ["ls"], [/* 21 vars */]) = 0
brk(0) = 0x8c31000
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
mmap2(NULL, 8192, PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb78c7000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
...

http://www.thegeekstuff.com/2011/11/strace-examples/

http://www.thegeekstuff.com/2011/11/strace-examples/

Aside – Fun with strace!

Fall 2018Secure Software Systems

91

$ strace -e open ls
open("/etc/ld.so.cache", O_RDONLY) = 3
open("/lib/libselinux.so.1", O_RDONLY) = 3
open("/lib/librt.so.1", O_RDONLY) = 3
open("/lib/libacl.so.1", O_RDONLY) = 3
open("/lib/libc.so.6", O_RDONLY) = 3
open("/lib/libdl.so.2", O_RDONLY) = 3
open("/lib/libpthread.so.0", O_RDONLY) = 3
open("/lib/libattr.so.1", O_RDONLY) = 3
open("/proc/filesystems", O_RDONLY|O_LARGEFILE) = 3
open("/usr/lib/locale/locale-archive", O_RDONLY|O_LARGEFILE) = 3
open(".", O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_DIRECTORY|O_CLOEXEC) = 3
Desktop Documents Downloads examples.desktop libflashplayer.so
Music Pictures Public Templates Ubuntu_OS Videos

Only show specific syscall(s):

http://www.thegeekstuff.com/2011/11/strace-examples/

http://www.thegeekstuff.com/2011/11/strace-examples/

Aside – Fun with strace!

Fall 2018Secure Software Systems

92

$ ps -C firefox-bin
PID TTY TIME CMD 1725 ? 00:40:50 firefox-bin

$ sudo strace -p 1725
...
...
...

Attach to a currently running process
(If not same user as you, must be root…)

http://www.thegeekstuff.com/2011/11/strace-examples/

http://www.thegeekstuff.com/2011/11/strace-examples/

Aside – Fun with strace!

Fall 2018Secure Software Systems

93

$ strace -t -e open ls /home
20:42:37 open("/etc/ld.so.cache", O_RDONLY) = 3
20:42:37 open("/lib/libselinux.so.1", O_RDONLY) = 3
20:42:37 open("/lib/librt.so.1", O_RDONLY) = 3
20:42:37 open("/lib/libacl.so.1", O_RDONLY) = 3
20:42:37 open("/lib/libc.so.6", O_RDONLY) = 3
20:42:37 open("/lib/libdl.so.2", O_RDONLY) = 3
20:42:37 open("/lib/libpthread.so.0", O_RDONLY) = 3
20:42:37 open("/lib/libattr.so.1", O_RDONLY) = 3
20:42:37 open("/proc/filesystems", O_RDONLY|O_LARGEFILE) = 3
20:42:37 open("/usr/lib/locale/locale-archive", O_RDONLY|O_LARGEFILE) = 3
20:42:37 open("/home", O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_DIRECTORY|O_CLOEXEC) = 3
shafer

Print timestamp for each syscall:

http://www.thegeekstuff.com/2011/11/strace-examples/

http://www.thegeekstuff.com/2011/11/strace-examples/

Aside – Fun with strace!

Fall 2018Secure Software Systems

94

$ strace -r ls
0.000000 execve("/bin/ls", ["ls"], [/* 37 vars */]) = 0
0.000846 brk(0) = 0x8418000
0.000143 access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or
directory)
0.000163 mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0xb787b000
0.000119 access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or
directory)
0.000123 open("/etc/ld.so.cache", O_RDONLY) = 3
0.000099 fstat64(3, {st_mode=S_IFREG|0644, st_size=67188, ...}) = 0
0.000155 mmap2(NULL, 67188, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb786a000

Print relative timestamp for each syscall:

http://www.thegeekstuff.com/2011/11/strace-examples/

http://www.thegeekstuff.com/2011/11/strace-examples/

Protection in Linux – prctl()

ì “Process Control”

ì Disabling the PR_SET_DUMPABLE features prevents
other processes (at the same privilege level, not root)
from using ptrace() to observe memory, file
descriptors, registers, and to control execution
ì ptrace() is often used by debuggers and code analysis

tools (and evildoers)

ì Enabled by default on some systems (but not all)

Fall 2018Secure Software Systems

95

#include <prctl.h>

prctl(PR_SET_DUMPABLE, 0);

Protection in Linux

ì SELinux
ì Will devote a full section to discussing

ì Namespaces
ì Will discuss in Containers section

Fall 2018Secure Software Systems

96

ì

Fall 2018Secure Software Systems

97

SELinux

SELinux

ì “Security Enhanced Linux”

ì Developed by NSA and RedHat

ì First release in 2000

ì Merged into mainline kernel in 2003
(so it’s not just a random set of NSA patches)

ì Goal: Supplement existing discretionary access control
(DAC) in Linux with mandatory access control (MAC)
ì What’s the difference between these two?

ì https://selinuxproject.org/

Fall 2018Secure Software Systems

98

https://selinuxproject.org/

SELinux

ì What does SELinux do to the Linux kernel?
ì MAC provides granular permissions for subjects

(users, processes) and objects (files, pipes, network
interfaces, devices)

ì Added security fields to kernel data structures
ì Added calls to hook kernel functions at critical points
ì Added functions for registering and unregistering

security modules
ì Added kernel component (Security Server) to

enforce security policies

Fall 2018Secure Software Systems

99

Hooks (Linux Security Modules)

ì Hooks actually provided by Linux Security Modules
(generic framework for MAC, not specific to
SELinux)
ì Mediate security-sensitive operations

ì Files, directories, IPC, network, semaphores, shared
memory, ...

ì Variety of operations per data type
ì Control access to read of file data and file metadata

separately

ì Statically compiled into kernel to prevent tampering

Fall 2018Secure Software Systems

100

SELinux Policy Example

ì For user to run passwd program
ì Only passwd should have permission to modify /etc/shadow

ì Need permission to execute the passwd program
ì allow user_t passwd_exec_t:file execute (user can exec

/usr/bin/passwd)
ì allow user_t passwd_t:process transition (user gets passwd perms)

ì Must transition domains to passwd_t from user_t
ì allow passwd_t passwd_exec_t:file entrypoint (run w/ passwd

perms)
ì type_transition user_t passwd_exec_t:process passwd_t

ì Passwd can the perform the operation
ì allow passwd_t shadow_t:file {read write} (can edit passwd file)

Fall 2018Secure Software Systems

101

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/pdf/SELinux_Users_and_Administrators_Guide/Red_Hat_Enterprise_Linux-7-
SELinux_Users_and_Administrators_Guide-en-US.pdf

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/pdf/SELinux_Users_and_Administrators_Guide/Red_Hat_Enterprise_Linux-7-SELinux_Users_and_Administrators_Guide-en-US.pdf

SELinuxArchitecture

Fall 2018Secure Software Systems

102

Design Goal: Separation of policy specification from enforcement of policy

SELinux

ì Complementary with previous security mechanisms
ì Use seccomp() to only allow read() syscall
ì Use SELinux to only accept certain file descriptors

for read()

ì Key difference: SELinux policy is configured at the
system
ì Cannot be changed by an application
ì Centralized security policy under administrator

control
ì seccomp() is configured at the programmer level

Fall 2018Secure Software Systems

103

SELinux

Fall 2018Secure Software Systems

104

0

20

40

60

80

100

120

20
04

-0
1

20
04

-0
6

20
04

-1
1

20
05

-0
4

20
05

-0
9

20
06

-0
2

20
06

-0
7

20
06

-1
2

20
07

-0
5

20
07

-1
0

20
08

-0
3

20
08

-0
8

20
09

-0
1

20
09

-0
6

20
09

-1
1

20
10

-0
4

20
10

-0
9

20
11

-0
2

20
11

-0
7

20
11

-1
2

20
12

-0
5

20
12

-1
0

20
13

-0
3

20
13

-0
8

20
14

-0
1

20
14

-0
6

20
14

-11

20
15

-0
4

20
15

-09

20
16

-0
2

20
16

-0
7

20
16

-12

20
17

-0
5

Google	Trends,	2004-Present
Enable	SELinux Disable	SELinux

#(*#%$^ Security!

Just turn the
whole system off!

Other Examples

ì Mandatory Access Control
ì Linux: SELinux, AppArmor, Smack, TOMOYO

(all using Linux Security Modules)
ì BSD: TrustedBSD
ì Windows: Integrity Levels

Fall 2018Secure Software Systems

105

ì

Fall 2018Secure Software Systems

106

Virtualization

Virtualization

ì Q: Does virtualization belong in the hardware or
software section of our discussion?
ì A: Yes!

Fall 2018Secure Software Systems

107

Terminology

ì Hypervisor / Virtual Machine Monitor
ì Hardware + software that creates and runs virtual

machines
ì Think “supervisor”, but where “hyper” is a stronger

type of supervisor

ì Classic terminology
ì Type 1 vs Type 2 hypervisor

Popek, Gerald J.; Goldberg, Robert P. (1974). “Formal
requirements for virtualizable third generation
architectures”. Communications of the ACM. 17 (7): 412–
421. doi:10.1145/361011.361073

Fall 2018Secure Software Systems

108

Hosted Virtualization

Fall 2018Secure Software Systems

109

Type 2
Hypervisor

Hosted Virtualization

ì Run on top of commodity OS

ì Examples
ì VMWare Workstation, Player, Fusion
ì Virtualbox
ì Parallels Desktop

Fall 2018Secure Software Systems

110

Native / Bare Metal Virtualization

Fall 2018Secure Software Systems

111

More
efficient, but
not as easy
to install.

The virtual
machine
monitor acts
like an
operating
system
itself!

Type 1
Hypervisor

Native Virtualization

ì Replace commodity OS

ì Examples
ì Xen
ì VMWare ESX/ESXi
ì Linux kvm (kernel module that acts like Type 1

hypervisor)

Fall 2018Secure Software Systems

112

x86 Virtualization

ì Q: How do we support Virtual Machines?
ì Multiple operating systems running on single

computer
ì Each OS kernel thinks they “own” the hardware –

how do we share?

Fall 2018Secure Software Systems

113

x86 Virtualization

ì A1: Software Emulation
ì Dynamically recompile guest OS and emulate

hardware instructions in software
ì Very complex / high overhead

ì Examples
ì QEMU

ì https://www.qemu.org/

ì PearPC (PowerPC emulator on x86)
ì http://pearpc.sourceforge.net/

ì Unicorn (ARM, 68K, MIPS, SPARC)
ì http://www.unicorn-engine.org/

Fall 2018Secure Software Systems

114

https://www.qemu.org/
http://pearpc.sourceforge.net/
http://www.unicorn-engine.org/

x86 Virtualization

ì A2: Paravirtualization
ì Modify guest OS code

ì Find all code that requires ring 0 permission
ì Emulate that code in hypervisor
ì Replace OS code with call to hypervisor

ì Pros: High performance
ì Cons:

ì Limited OS support
ì Must keep up with OS kernel development

ì Example
ì Xen VMM paravirtualization

Fall 2018Secure Software Systems

115

x86 Virtualization

ì A3: Crazy software tricks
ì Move the guest OS into ring 1

ì Set “traps” on all instructions that cannot run at ring 1 or

require adjustments to share resources with other guests

ì Trap into virtual machine manager and emulate in software

ì Pros: Works with any OS

ì Cons:

ì Slow due to emulation of some instructions

(better than full emulation)

ì Very complicated -

http://www.virtualbox.org/manual/ch10.html#idp13729504

ì Example

ì VirtualBox (x86-only in software virtualization mode)

Fall 2018Secure Software Systems

116

http://www.virtualbox.org/manual/ch10.html

x86 Virtualization

ì A4: Hardware Virtualization
ì Modify CPU to provide native virtualization support

for un-modified operating systems
ì Ring -1 : Hypervisor Mode
ì Examples

ì Intel VT-x – Virtualization Technology for x86
ì AMD-V

ì New machine instructions that only work at ring -1

Fall 2018Secure Software Systems

117

Hardware Virtualization

ì Two new operating modes for CPU

ì Root mode – “classic” – Used by non-virtualized systems

and hypervisor

ì Non-Root mode – Adds Virtual Machine Control Structure

(VMCS) to control instruction behavior. Used by guest OS

ì Two new events:

ì VMENTRY – Guest OS did something requiring hypervisor

oversight (Root->Non-root mode)

ì VMEXIT – Hypervisor finished / time to resume guest

(Non-root -> Root mode)

Fall 2018Secure Software Systems

118

Hardware-Assisted Virtualization

ì Guest OS has address space not shared with
hypervisor J

ì Guest OS kernel runs at ring 0 in non-root mode J

ì Minimal software emulation J

ì No need to re-write paravirtualization code to keep
up with changes in guest OS kernel J

Fall 2018Secure Software Systems

119

ì

Fall 2018Secure Software Systems

120

Containers

Containers

ì Operating System Level Virtualization
ì Aka “Containerization”
ì OS allows multiple isolated user-space instances

ì Modern examples
ì Docker - https://www.docker.com/ (released 2013)
ì Linux LXC - https://linuxcontainers.org/
ì Linux OpenVZ - https://openvz.org/
ì FreeBSD Jails
ì Solaris Containers

Fall 2018Secure Software Systems

121

Not a new idea! These existed before virtual
machines were the next big thing…

https://www.docker.com/
https://linuxcontainers.org/
https://openvz.org/

Container Features

ì Q: What can I do inside a container?
ì Unique users (including root users!)
ì Unique memory
ì Unique files
ì Unique applications (processes)
ì Unique network configuration
ì Unique system libraries
ì Reboot containers independently

Fall 2018Secure Software Systems

122

Container Features

ì Q: What can I not do in a container?

ì A: Run a different OS than the host OS
ì If your host is Linux, your containers are Linux
ì If you host is FreeBSD, your containers are FreeBSD

ì A: Change the kernel
ì It’s the same kernel underlying all containers and

the host OS

Fall 2018Secure Software Systems

123

Container Implementation

ì How does this work? (in Linux)

ì cgroups (“control groups”) is kernel feature that

isolates hardware resources used by a collection of

processes

ì Resource = CPU, memory, disk I/O, network I/O, …

ì Can set limits on groups

ì Can prioritize groups

ì Can freeze/checkpoint/research groups

Fall 2018Secure Software Systems

124

Container Implementation

ì How does this work? (in Linux)
ì namespaces is kernel feature that virtualizes

system resources used by a collection of processes
ì Resource = Process IDs, hostname, user IDs,

interprocess communication, filesystem mount
points, network interface names…

ì Container systems like LXC, OpenVZ, Docker rely on
kernel features like cgroups and namespaces

Fall 2018Secure Software Systems

125

Container Implementation - Filesystem

ì Layers

ì Original filesystem is marked read-only, and each
container layers a new filesystem on top storing
only modifications
ì Space efficient!
ì Easy to distribute! (no huge VM image)

ì Union mount – combine multiple directories into
single directory with unified view

Fall 2018Secure Software Systems

126

Fall 2018Secure Software Systems

127

Docker vs LXC

ì Share common kernel
features (namespaces,
cgroups)

ì Different runtime
engines/libraries

ì LXC is an OS container
ì Designed to run multiple

processes/services

ì Docker is an Application
container
ì Designed to package and

run a single service

Fall 2018Secure Software Systems

128

https://robinsystems.com/blog/containers-deep-dive-lxc-vs-docker-comparison/

https://robinsystems.com/blog/containers-deep-dive-lxc-vs-docker-comparison/

Docker vs LXC

Fall 2018Secure Software Systems

129

https://robinsystems.com/blog/containers-deep-dive-lxc-vs-docker-comparison/

Microservices!
(Application packaging system)

LXC: Can run different Linux distributions
but the kernel has to be identical

https://robinsystems.com/blog/containers-deep-dive-lxc-vs-docker-comparison/

Docker vs LXC

Fall 2018Secure Software Systems

130

https://blog.risingstack.com/operating-system-containers-vs-application-containers/

https://blog.risingstack.com/operating-system-containers-vs-application-containers/

Docker vs LXC

Fall 2018Secure Software Systems

131

Google search trends 2017 – who is winning?

https://trends.google.com
https://robinsystems.com/blog/containers-deep-dive-lxc-vs-docker-comparison/

https://trends.google.com/
https://robinsystems.com/blog/containers-deep-dive-lxc-vs-docker-comparison/

Containers vs Virtual Machines

ì Overhead?
ì Containers have less overhead

(VMs must virtualize the hardware + run full guest OS)

ì Requirements?
ì Containers require no hardware support

ì Flexibility?
ì VMs are more flexible (can run multiple guest operating

systems of different types on the same host)

Fall 2018Secure Software Systems

132

Server Virtualization -> Virtual Machines, as is
Operating System Virtualization -> Containers

Containers vs Virtual Machines

ì Security?
ì Containers are not fully isolated! L

ì Filesystems under /sys not virtualized
ì Devices not virtualized (/dev/mem, dev/sd*)
ì Kernel modules not virtualized
ì SELinux not virtualized

ì “Containers do not contain”
https://opensource.com/business/14/7/docker-security-
selinux

ì Must apply same security practices as with applications
running outside of a container
ì Drop privileges as quickly as possible
ì Run services as non-root whenever possible
ì Treat root within container as if it was root outside of container

Fall 2018Secure Software Systems

133

https://opensource.com/business/14/7/docker-security-selinux

All of the Above: Containers and VMs

Fall 2018Secure Software Systems

134

https://blog.docker.com/2016/04/containers-and-vms-together/

https://blog.docker.com/2016/04/containers-and-vms-together/

ì

Fall 2018Secure Software Systems

135

Sandboxes

Sandbox

ì Field of Software Development
ì Sandbox is safe place to test code isolated from

production environment

Fall 2018Secure Software Systems

136

Sandbox

ì Field of Computer Security
ì Sandbox is safe place to run code at high risk of

exploitation
ì Idea: We assume arbitrary code execution (by

attacker) inside of sandbox
ì Idea: We try to write perfect code (of course), but

design defense-in-depth so that if we fail, the
attacker will have difficulty leveraging our
vulnerability into a useful exploit. No single point of
failure!

Fall 2018Secure Software Systems

137

Sandbox (Generic)

Fall 2018Secure Software Systems

138

Dangerous untrusted input
from users, network, etc…

Your System

Sandbox

Parsing dangerous
data here.
Limited code, almost no
privileges, locked down
by OS

Process #1

Main Program

Safe code

Process #2

Communication via tightly controlled
IPC channel

IPC?

Sandbox (Generic)

ì Q: What should our sandbox not be allowed to
do?

ì A: Will vary by design, but potentially
ì Read/write to disk? (beyond scratch storage)
ì Read/write to network?
ì Create new processes or threads?
ì Use more than X% of CPU or memory?
ì Apply the least privileges principle very strongly here

and lock it down!

Fall 2018Secure Software Systems

139

Sandbox Examples

ì “Security In-Depth for Linux Software”
ì https://www.cr0.org/paper/jt-ce-sid_linux.pdf

ì Web browsers: Google Chrome, IE, Edge

ì File viewers: Adobe Acrobat

ì …

Fall 2018Secure Software Systems

140

https://www.cr0.org/paper/jt-ce-sid_linux.pdf

ì
Data Execution Prevention (DEP)

Fall 2018Secure Software Systems

141

Data Execution Prevention (DEP)

ì Exploit mitigation technique
ì Make blackhat’s job harder by preventing malicious

code from executing out of any random memory
location they might find

ì Idea: Only legitimate code segments should be
marked as executable
ì Also known as DEP, NX, XN, XD, W^X…

ì Think back to discussion on memory paging and
enforcement by hardware

Fall 2018Secure Software Systems

142

Data Execution Prevention (DEP)

ì Goal: No segment of memory should ever be writeable
and executable at the same time
ì W ^ X
ì Unless you’re writing a JIT compiler, you have no excuse

for writing code onto the heap and then executing it

ì Data segments
ì Stack, Heap
ì (others)

ì Code segments
ì .text
ì (others)

Fall 2018Secure Software Systems

143

Runtime Process without DEP

Fall 2018Secure Software Systems

144

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/11/07_lecture.pdf

Runtime Memory

ELF Executable
.text segment

.rodata

Heap

Libraries (libc)

Stack

0x00000000 – Start of memory

(R-X) Read, Execute

(R--) Read

(RWX) Read, Write, Execute

Many segments in libraries, R-X, R--, etc…

(RWX) Read, Write, Execute

0xFFFFFFFF – End of memory

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/11/07_lecture.pdf

Runtime Process with DEP

Fall 2018Secure Software Systems

145

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/11/07_lecture.pdf

Runtime Memory

ELF Executable
.text segment

.rodata

Heap

Libraries (libc)

Stack

0x00000000 – Start of memory

(R-X) Read, Execute

(R--) Read

(RWX) Read, Write, Execute

Many segments in libraries, R-X, R--, etc…

(RWX) Read, Write, Execute

0xFFFFFFFF – End of memory

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/11/07_lecture.pdf

Runtime Process with DEP

Fall 2018Secure Software Systems

146

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/11/07_lecture.pdf

Runtime Memory

ELF Executable
.text segment

.rodata

Heap

Libraries (libc)

Stack

0x00000000 – Start of memory

(R-X) Read, Execute

(R--) Read

(RW-) Read, Write

Many segments, R-X, R--, etc…

(RW-) Read, Write

0xFFFFFFFF – End of memory

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/11/07_lecture.pdf

Data Execution Prevention (DEP)

ì Widespread adoption
ì Linux: Kernel 2.6.8 (2004)
ì Windows: Windows XP SP2 (2004)
ì Mac: OS X 10.5 (2006)
ì iOS: Always?
ì Android: 2.3

Fall 2018Secure Software Systems

147

ìAddress Space Layout Randomization
(ASLR)

Fall 2018Secure Software Systems

148

ASLR

ì Exploit mitigation technique
ì Make blackhat’s job harder by preventing identical

code from working on all victim machines

ì Idea: Address ranges for important memory
segments should be random at every execution
ì Memory segments are no longer in static address

ranges
ì Attackers have no expectation where anything is in

memory

Fall 2018Secure Software Systems

149

ASLR

ì Q: What are we randomizing?

ì A: All of the things!
Base address of user executable code
Base address of stack
Base address of heap
Base address of libraries

ì These are all virtual addresses

Fall 2018Secure Software Systems

150

Runtime Process without ASLR

Fall 2018Secure Software Systems

151

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/15/09_lecture.pdf

Runtime Memory

ELF Executable
.text segment

.rodata

Heap

Libraries (libc)

Stack

0x00000000 – Start of memory

0x08049290 – 0x0805033c (R-X)

0x08050360 – 0x08051208 (R--)

0x08055000 – 0x08076000 (RW-)

0xb7e25000 – 0xb7fcd000

0xbffdf000 – 0xc0000000 (RW-)

0xFFFFFFFF – End of memory

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/15/09_lecture.pdf

Run #1 without ASLR

Fall 2018Secure Software Systems

152

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/15/09_lecture.pdf

Runtime Memory

ELF Executable
.text segment

.rodata

Heap

Libraries (libc)

Stack

0x00000000 – Start of memory

0x08049290 – 0x0805033c (R-X)

0x08050360 – 0x08051208 (R--)

0x08055000 – 0x08076000 (RW-)

0xb7e25000 – 0xb7fcd000

0xbffdf000 – 0xc0000000 (RW-)

0xFFFFFFFF – End of memory

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/15/09_lecture.pdf

Run #2 without ASLR

Fall 2018Secure Software Systems

153

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/15/09_lecture.pdf

Runtime Memory

ELF Executable
.text segment

.rodata

Heap

Libraries (libc)

Stack

0x00000000 – Start of memory

0x08049290 – 0x0805033c (R-X)

0x08050360 – 0x08051208 (R--)

0x08055000 – 0x08076000 (RW-)

0xb7e25000 – 0xb7fcd000

0xbffdf000 – 0xc0000000 (RW-)

0xFFFFFFFF – End of memory

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/15/09_lecture.pdf

Run #3 without ASLR

Fall 2018Secure Software Systems

154

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/15/09_lecture.pdf

Runtime Memory

ELF Executable
.text segment

.rodata

Heap

Libraries (libc)

Stack

0x00000000 – Start of memory

0x08049290 – 0x0805033c (R-X)

0x08050360 – 0x08051208 (R--)

0x08055000 – 0x08076000 (RW-)

0xb7e25000 – 0xb7fcd000

0xbffdf000 – 0xc0000000 (RW-)

0xFFFFFFFF – End of memory

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/15/09_lecture.pdf

ASLR

ì Let’s add randomization now with ASLR

Fall 2018Secure Software Systems

155

Run #1 with ASLR

Fall 2018Secure Software Systems

156

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/15/09_lecture.pdf

Runtime Memory

ELF Executable
.text segment

.rodata

Heap

Libraries (libc)

Stack

0x00000000 – Start of memory

0x08049290 – 0x0805033c (R-X)

0x08050360 – 0x08051208 (R--)

0x98429000 – 0x9844a000 (RW-)

0x244b9000 – 0x24661000

0x7fa54000 – 0x7fa75000 (RW-)

0xFFFFFFFF – End of memory

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/15/09_lecture.pdf

Run #1 with ASLR

Fall 2018Secure Software Systems

157

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/15/09_lecture.pdf

Runtime Memory

ELF Executable
.text segment

.rodata

Heap

Libraries (libc)

Stack

0x00000000 – Start of memory

0x08049290 – 0x0805033c (R-X)

0x08050360 – 0x08051208 (R--)

0xa07ee000 – 0xa080f000 (RW-)

0x0054000 – 0x006e8000

0x1096200 – 0x10983000 (RW-)

0xFFFFFFFF – End of memory

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/15/09_lecture.pdf

ASLR Support

ì Widespread industry adoption

ì Linux: 2005 (kernel 2.6.12+) - Stack & nmap

ì Compile-time option: Position Independent Executable
$ gcc -pie -fPIE -o program program.c

ì Required for shared libraries, optional for programs

ì Windows: 2007 (Windows Vista+) – Full ASLR

ì Link-time option: /DYNAMICBASE
ì https://insights.sei.cmu.edu/cert/2014/02/differences-between-aslr-on-windows-

and-linux.html

ì Mac: 2011 (Mac OS X 10.7+) – Full ASLR

ì iOS: 2011 (iOS 4.3) – Full ASLR

ì Android: 2012 (Android 4.0+) – Full ASLR

Fall 2018Secure Software Systems

158

https://insights.sei.cmu.edu/cert/2014/02/differences-between-aslr-on-windows-and-linux.html

