
ì
Meltdown and Spectre
CYBR 200 | Fall 2018 | University of the Pacific | Jeff Shafer

ì
Meltdown
January 2018

Fall 2018Secure Software Systems

2

Capabilities

ì Read arbitrary physical memory (including kernel
memory) as an unprivileged user process

ì Exploit scenarios
ì Privilege escalation
ì Container escape - Docker instances, Xen para-

virtualized VMs, etc...
ì Find password hashes, private keys, or just dump all

of physical memory and use your favorite forensics
tools (e.g. Volatility)

Fall 2018Secure Software Systems

3

Attack Mechanism

ì Out of order execution of instructions is used to
leak data via processor covert channel (cache lines)

Fall 2018Secure Software Systems

4

(1) r1 = r4 / r7
(2) r8 = r1 + r2
(3) r5 = r5 + 1
(4) r6 = r6 – r3
(5) r4 = r5 + r6
(6) r7 = r8 * r4

Assume divide is much slower

1 3 4

2 5

6

r1 r5 r6

r8 r4

Data Flow Graph:

In Order Execution:

Out of Order Execution:

1 2
3
4

5 6

1 2
3
4

5
6

Exploiting Out of Order Execution

Fall 2018Secure Software Systems

5

1 raise_exception();
2 // the line below is never reached
3 access(probe_array[data * 4096]);

Security Problem: Out of order execution (if not “retired”) has no
impact on the CPU architectural state (registers, memory). Safe?

Not fully! It does affect the CPU micro-architectural state (caches…)

Proof the post-exception execution happened:

Cache Attacks

ì Exploit timing differences caused by memory
caches

ì Attacker frequently flushes a targeted memory
location using cflush instructions
ì Measure time taken to reload data with high

precision
ì Infer whether the data was loaded into cache by

another process in meantime

Fall 2018Secure Software Systems

6

Covert channel

ì Attacker controls both sides but can’t communicate
openly between them due to security controls
ì One part induces the side effect
ì One part measures the side effect

ì Works with cache attacks!

Fall 2018Secure Software Systems

7

Meltdown Attack

Fall 2018Secure Software Systems

8

1 ; rcx = kernel address to target
2 ; rbx = probe array for covert channel
3 retry:
4 mov al, byte [rcx] ; try to read from kernel addr (1 byte)– exception!

5 shl rax, 0xc ; This executes! Multiply secret by page size (4kB)

6 jz retry ; Ignore zeros (filtering noise)

7 mov rbx, qword [rbx + rax] ; This executes! Save secret to covert channel

Despite exception (line 4), Intel CPU continues
executing any out of order instructions (line 5-7) that
were already underway.
The exception is only noticed when instructions are
retired. Architectural state is not affected, but micro-
architectural state is.
(Think of this as a race condition – will the exception
be noticed before the subsequent instructions?)

Fall 2018Secure Software Systems

9

Demo
https://github.com/IAIK/meltdown

https://github.com/IAIK/meltdown

Mitigation

ì Kernel updates can mitigate security flaw

ì Patched in Linux with KAISER/KPTI (Kernel Page Table Isolation)

ì Patched in Windows, OS X

ì Microcode updates for affected CPUs

ì What does KPTI patch do?

ì Kernel addresses are traditionally mapped into user space processes to

reduce overhead in system calls. This is not supposed to be a problem! The

descriptor privilege level (DPL) prevents ring-3 user processes from touching

ring-0 kernel memory

ì Kernel page table isolation (KPTI) removes the mapping of kernel memory in

user space. Because it's no longer mapped, it can't be read by Meltdown.

The processor is still vulnerable to this arbitrary read exploit, but we've

removed (nearly) all of the addresses an attacker might read from. So the

attack is no longer practical

ì Open question - some (small) kernel memory must be mapped into user

memory, e.g. interrupt handlers. Can this be exploited by clever attacker?

Fall 2018Secure Software Systems

10

ì
Spectre
January 2018

Fall 2018Secure Software Systems

11

Capabilities

ì Read arbitrary memory from current process (not
the kernel, not other processes)

ì Exploit scenarios:
ì Escape sandbox (e.g. JavaScript execution in browser

can read process memory outside of sandbox)
ì Leaking addresses of ASLR-protected user processes

to facilitate remote code execution
ì There's a class of vulnerabilities that are difficult to

exploit due to ASLR that may suddenly become
feasible…

Fall 2018Secure Software Systems

12

Attack Mechanism

ì Abuse of branch prediction and speculative
execution to leak data via processor covert channel
(cache lines)

ì Feasible for Intel, AMD, ARM processors

Fall 2018Secure Software Systems

13

(1) if r1 != 0 then goto 4
(2) r6 = r3 + 1
(3) goto 5
(4) r6 = r3 – 1
(5) r9 = r5 + 1
(6) if r6 == 0 then goto 10

Branch prediction: Record history of path
taken/not taken and guess prior to knowing
correct answer

Speculative execution: Execute instructions
that may not be needed (wrong branch)

Attack Details – Bounds Check Bypass

ì This attack variant allows malicious code to circumvent bounds checking features
built into most binaries. Even though the bounds checks will still fail, the CPU will
speculatively execute instructions after the bounds checks, which can access
memory that the code could not normally access. When the CPU determines the
bounds check has failed, it discards any work that was done speculatively;
however, some changes to the system can be still observed (in particular, changes
to the state of the CPU caches). The malicious code can detect these changes and
read the data that was speculatively accessed.

ì The primary ramification is that it is difficult for a system to run untrusted code
within a process and restrict what memory within the process the untrusted code
can access.

ì In the kernel, this has implications for systems such as the extended Berkeley
Packet Filter (eBPF) that takes packet filterers from user space code, just-in-time
(JIT) compiles the packet filter code, and runs the packet filter within the context of
kernel. The JIT compiler uses bounds checking to limit the memory the packet filter
can access, however, this allows an attacker to use speculation to circumvent these
limitations.

Fall 2018Secure Software Systems

14

Attack Details – Bounds Check Bypass

Fall 2018Secure Software Systems

15

struct array {
unsigned long length;
unsigned char data[];
};
struct array *arr1 = ...; /* small array */
struct array *arr2 = ...; /* array of size 0x400 */
/* >0x400 (OUT OF BOUNDS!) */
unsigned long untrusted_offset_from_caller = ...;
if (untrusted_offset_from_caller < arr1->length) {
unsigned char value = arr1->data[untrusted_offset_from_caller];
unsigned long index2 = ((value&1)*0x100)+0x200;
if (index2 < arr2->length) {
unsigned char value2 = arr2->data[index2];

}
}

https://googleprojectzero.blogspot.ca/2018/01/reading-privileged-memory-with-side.html

Speculative
because
arr1->length
hasn’t
returned yet

Covert channel

Uncached locations / slow to access...

After execution returns to non-speculative path, arr2->data[index2] is still in cache!
Attacker measures time to read arr2->data[0x200] versus arr2->data[0x300]
Result: Determine whether index2 was 0x200 or 0x300
Result: Determine whether arr2->data[untrusted_offset_from_caller]&1 is 0 or 1

Location attacker wants to read…

https://googleprojectzero.blogspot.ca/2018/01/reading-privileged-memory-with-side.html

Mitigation – Bounds Check Bypass

ì Analysis and recompilation so that vulnerable binary
code is not emitted
ì OS requires fixes
ì Applications which execute untrusted code require fixes

ì Solution: lfence serializing instruction
ì Grinds processor to a halt, forcing it to complete all prior

instructions before completely
ì Kills out of order & speculative execution temporarily
ì Must (carefully) add in all the right places – don’t miss

any!

Fall 2018Secure Software Systems

16

Retpoline – “Return Trampoline”

Fall 2018Secure Software Systems

17

https://support.google.com/faqs/answer/7625886

A common C++ indirect branch
class Base {
public:
virtual void Foo() = 0;

};
class Derived : public Base {
public:
void Foo() override { … }

};
Base* obj = new Derived;
obj->Foo();

A compiled x86 indirect branch
jmp *%rax; /* indirect branch to
the target referenced by %rax */

Indirect branch construction
jmp *%r11 call set_up_target; (1)

capture_spec: (4)
pause;
jmp capture_spec;

set_up_target:
mov %r11, (%rsp); (2)
ret; (3)

Protects against branch target
injection, another Spectre-class attack

Captures
speculative

execution path

Retpoline
equivalent to

indirect branch

https://support.google.com/faqs/answer/7625886

Comparison

Fall 2018Secure Software Systems

18

Meltdown Spectre

Read (leak) kernel
memory?

Yes No

Patched with KPTI Yes No

Read (leak) user memory Yes Yes

Exploit remotely Sometimes Yes

Likely target Kernel memory Browser memory

Practical attacks against Intel CPUs Intel, AMD, ARM CPUs

Indicators of Compromise for Meltdown and Spectre? "Near Non-Existent" - Have
nation states been exploiting this since the embargoed information was distributed to
key companies? (Surely they have access to private kernel email development lists, yes?)

New (Related) Attacks

ì Meltdown (January 2018)

ì Spectre (January 2018)

ì Spectre 2 (Marchy 2018)
ì https://arstechnica.com/gadgets/2018/03/its-not-just-

spectre-researchers-reveal-more-branch-prediction-attacks/

ì Speculative Store Bypass (SSB) – May 2018
ì https://arstechnica.com/gadgets/2018/05/new-speculative-

execution-vulnerability-strikes-amd-arm-and-intel/

ì Speculative Buffer Overflows – July 2018
ì https://arstechnica.com/gadgets/2018/07/new-spectre-like-

attack-uses-speculative-execution-to-overflow-buffers/

Fall 2018Secure Software Systems

19

https://arstechnica.com/gadgets/2018/03/its-not-just-spectre-researchers-reveal-more-branch-prediction-attacks/
https://arstechnica.com/gadgets/2018/05/new-speculative-execution-vulnerability-strikes-amd-arm-and-intel/
https://arstechnica.com/gadgets/2018/07/new-spectre-like-attack-uses-speculative-execution-to-overflow-buffers/

New (Related) Attacks

ì All are permutations on same concept – divergence between:

ì Architectural behavior
ì What the assembly programmer expects to happen

(execution in order)

ì Micro-architectural behavior
ì What the processor actually does behind-the-scenes for

maximum performance
ì Example: Loading a value from memory. Programmer

expects processor will wait until address is known, but
processor might speculate on the address and do a load
early. If wrong address, processor will void result and try
again
ì Problem: Side effects (e.g. cache state)

Fall 2018Secure Software Systems

20

References

ì Summary Presentation
ì https://www.renditioninfosec.com/2018/01/meltdown-and-

spectre-vulnerability-slides/
ì Jake Williams (SANS & Rendition InfoSec)

ì Official website w/academic papers
ì https://spectreattack.com/

ì Demo code by paper authors
ì https://github.com/IAIK/meltdown

ì Google Project Zero
ì https://googleprojectzero.blogspot.ca/2018/01/reading-

privileged-memory-with-side.html

Fall 2018Secure Software Systems

21

https://www.renditioninfosec.com/2018/01/meltdown-and-spectre-vulnerability-slides/
https://spectreattack.com/
https://github.com/IAIK/meltdown
https://googleprojectzero.blogspot.ca/2018/01/reading-privileged-memory-with-side.html

