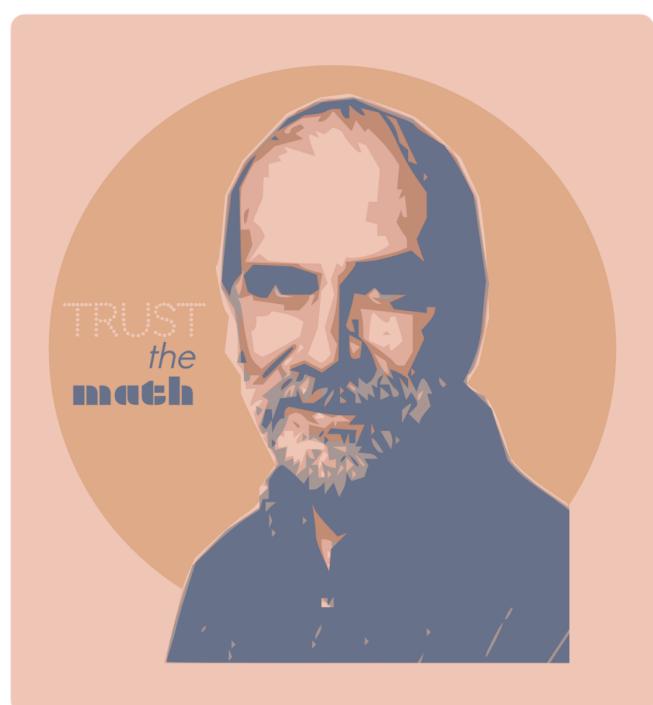


Secure Software Systems

CYBR 200 | Fall 2018 | University of the Pacific | Jeff Shafer

Cryptography

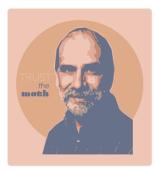
Let's talk about cryptography


An hour ought to do it, right?

ACrJ0XSN2Jodf5/SLFJORIBGOCZD5YAAYxXLxkkatxO/Byg+Ooi			
yjIXCzW4X6s7BoBGRGoMrlcVl1xrJOPidWbd6f2rmFzwXkM2F9h			
AC70YJPjuDeCzB9BjKu43tDiJykpM9XdB5iE9P8n67olfdGvffs			
OL6wyAwfCOOLwDDooElKieset	ryptography is hard		SVH5RoEccn
n/rkz7kł Cryptography ie			t0/NXeJDcLvS8E8tW20Z
DBoB+xV Cryptography is	naru	OiW4uxIzJNE	XMzH3ZQxI
		X/9egvUrYDr	Dztlm7p5D
5n/QjKBRQOc7NfLhvCVk3b7GqSVprCKjjav48jR1bZqMpZaZZLs			
W447y7cbPLiv2		JGjopNV	75yVs86bfV
18K+moU4Zjqzl Cryptogra			npkbsCokt
sV9qAfTIMaW7			xaQARAQAB
yBWYXJlbGFzICnqıxonımıuzzvykəkoıznyaXN0b3MudmFyZWxh			
2tlci5ncj6JAjkEEwECACMFAlSIDw0CGy8HCwkIBwMCAQYVCAIJ			
QIXgAAKCRCxxfYVqPj}			RdZTsaBOO
qBB+NYlgJD23D9Sv9CV <mark>Cryptography is (very) harc</mark>		3CTmdP06B	
nrtT7JlTWMpomudNF9c		gJWD62LZ0	
vjYczDRBu3oZKPNHPmUayvlS/A/74YZwDb3HdgimfTAqmV8+Bce			
<pre>>cx3UdZfscFNalS3ir7YXtqwCPdb2iB0vYJgaTwkCxtfvYyLWc2</pre>			
d5dx+kthvd08VHHaLc+o2onem/FKqeDDcA1ph0I6poBActa498g			
n9JL+hZtOFNhxlEhVNV4lJjztm2/tWYTq9oIE5sX7BjqSG0HcIo			

If it's **good encryption**, it should look like **random noise**

But just because it **looks** like random noise doesn't mean it's **good** encryption

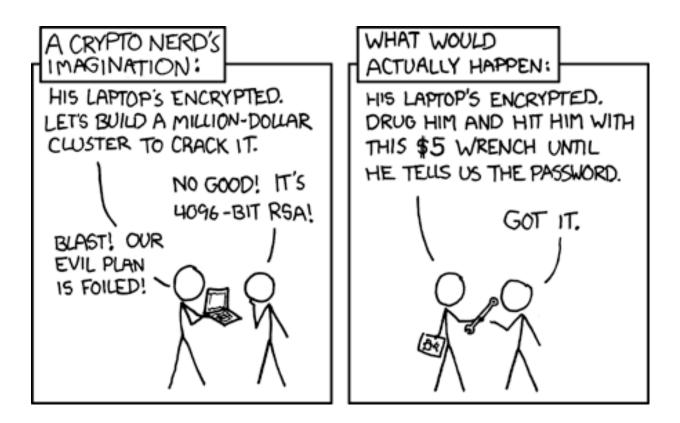


"Trust the Math"

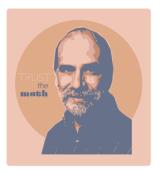
~ Bruce Schneier

https://www.schneier.com/

Cryptography is Harder Than It Looks



"Cryptography is harder than it looks"


- It looks like math, and we have smart mathematicians, so problem solved, right?
- Problem: Math equations can't secure anything
 - Write equations into software
 - Embed in a larger software system
 - Manage by an OS
 - Run on hardware
 - Connect to a network
 - Configure and operate by users
- Commonly find vulnerabilities *not* in underlying mathematics but in the <u>implementation</u>

https://www.schneier.com/blog/archives/2016/03/cryptography_is.html

Cryptography is Harder Than It Looks

Cryptography is Harder Than It Looks

"Complexity is the worst enemy of security"

- More lines of code
- More interactions with other systems
- More configuration options
- **7** Result: More vulnerabilities!

https://www.schneier.com/blog/archives/2016/03/cryptography_is.html

Great Disasters in Cryptography

7

Smart People Make Mistakes

Smart People Make Mistakes

- Do you believe that smart programmers can implement bugs?
 - Zero immunity from bugs just because you're working on crypto.cpp instead of gui.cpp
- Examples of cryptography implementation failures

Example: RC4 Stream Ciphers (e.g., WEP) (2007)

- (No CVE): Ability to reconstruct key from encrypted messages
- Discovered by Fluhrer, Mantin and Shamir in 2001
 - "Weaknesses in the Key Scheduling Algorithm of RC4"
 - Research paper: http://www.crypto.com/papers/others/rc4_ksaproc.pdf
- Applied to *aircrack* tool in 2007 can recover WEP password in minutes, zero skill required

Example: OpenSSH (2009)

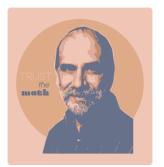
- CVE-2008-5161: Error handling in the SSH protocol ... makes it easier for remote attackers to recover certain plaintext data from an arbitrary block of ciphertext in an SSH session
 - Attack that, with probability 2⁽⁻¹⁸⁾, verifiably recovers 32 bits of OpenSSH-encrypted plaintext at an attacker-selected position
- Discovered by Albrecht, Paterson, Watson
 - ↗ "Plaintext Recovery Attacks Against SSH"
 - Research paper: <u>http://www.isg.rhul.ac.uk/~kp/SandPfinal.pdf</u>

Example: SSL 3.0 / TLS 1.0 (2011)

- CVE-2011-3389: The SSL protocol ... allows man-in-themiddle attackers to obtain plaintext HTTP headers via an attack on an HTTPS session in conjunction with JavaScript code
- **#** "BEAST" Attack **B**rowser **E**xploit **A**gainst **S**SL**/T**LS
- Discovered by Rizzo and Duong
 - ✓ "Here Come The ⊕ Ninjas" [XOR]
 - Research Paper: <u>http://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf</u>
 - Same authors also discovered "CRIME" in 2012 to hijack HTTPS sessions

Example: Bitcrypt malware (2014)

- Encrypts your hardware, blackmails you to get decryption key
- Authors intended to encrypt each file using a 128 byte key (1024 bits)
- Fatal flaw: File was actually encrypted with 128 <u>digit</u> key (426 bits)
 - Can be brute forced on standard PC in a few hours
- http://blog.cassidiancybersecurity.com/post/2014/02/Bitcrypt-broken



Example: OpenSSL (2014)

- CVE-2014-0160 : The ... TLS ... implementations in OpenSSL .. do not properly handle Heartbeat Extension packets, which allows remote attackers to obtain sensitive information from process memory via crafted packets that trigger a buffer over-read, as demonstrated by reading private keys
- "Heartbleed" attack <u>http://heartbleed.com/</u>
- Discovered by Neel Mehta (Google security team)

Example: Apple iMessage (2016)

- CVE-2016-1788: Messages in Apple iOS ... and watchOS ... does not properly implement a cryptographic protection mechanism, which allows remote attackers to read message attachments...
- Able to exploit remotely if either sender or receive phone are still online ("slow but silent")
- Commentary:
 - https://blog.cryptographyengineering.com/2016/03 /21/attack-of-week-apple-imessage/

"The designers of this system aren't novices. They're an experienced team with some of the best security engineers in the field. If these guys can't get the security right, just imagine how much worse it is for smaller companies without this team's level of expertise and resources. Now imagine how much worse it would be if you added a governmentmandated back door. There are more opportunities to get security wrong, and more engineering teams without the time and expertise necessary to get it right. It's not a recipe for security."

> ~ Bruce Schneier (2016) In response to iMessage cryptography

https://www.schneier.com/blog/archives/2016/03/cryptography_is.html