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Stream Ciphers

ì Have: A stream of bits

ì Image, video, webpage, email, …

ì Want: A cipher that can take an unlimited (or at least 
very long) stream of plaintext bits and encrypt

ì Idea: Divide incoming stream into blocks and encrypt 
each separately via existing block cipher

ì Called Block Cipher Mode of Operation
ì First attempt: Electronic Code Book (ECB) mode

ì Note: These are not AES-specific – Modes of Operation 
work for any block cipher
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Electronic Code Book Mode (ECB)
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Electronic Code Book (ECB) Mode
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Electronic Code Book Mode (ECB)

ì Electronic Code Book Mode (ECB) – Don’t use!

ì Two big problems
ì Same input block produces the same cipher block 

each time
ì Replay attacks
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Identical Blocks
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#!/usr/bin/python3
# Jeff Shafer, University of the Pacific
# Demo program illustrating information leakage
# of block ciphers (e.g. AES) in ECB mode

# Requires Python3 and PyCrypto
# https://www.pycrypto.org

from Crypto.Cipher import AES
from hashlib import md5

# Example image, 1418x779 pixels, 8 bit color depth
# AES default block size of 128 bits will take this image
# 15 pixels at a time

file = open("pacific.bmp", "rb")
plaintext_original = file.read() + b'000000'  # Pad length to multiple of 16. BMP files don't care.
##print(len(plaintext_original))

# Generate a key for AES encryption/decryption
# AES-128 key length is 16 bytes (128 bits)
key = md5("bogus garbage".encode('ascii')).hexdigest()

# Encrypt with AES in ECB mode
cipher = AES.new(key, AES.MODE_ECB)
ciphertext = cipher.encrypt(plaintext_original)

# "Cheat" for demo purposes - In order to view the ciphertext as a bitmap image,
# we copy the bitmap header bytes (specifying dimensions, color depth, etc...)
# from the unencrypted image and append the ciphertext after that.
# Use the bless hex editor, look at offset 0xA, and that byte will
# tell you where the actual image data starts after the header.
fake_ciphertext = plaintext_original[0:121] + ciphertext[122:]
file2 = open("pacific_encrypted.bmp", "wb")
file2.write(fake_ciphertext)

# Decrypt
plaintext_final = cipher.decrypt(ciphertext)
plaintext_final = plaintext_final[:-6]  # Cut off padding applied earlier

file3 = open("pacific_decrypted.bmp", "wb")
file3.write(plaintext_final)
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Original Decrypted

Ciphertext
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https://www.zerodayclothing.com/

https://www.zerodayclothing.com/


Replay Attack
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(eve)
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What’s the password for 
the exclusive party?

miecznik

Miecznik = 
Polish word
for swordfish

"
(bob)

What’s the password for 
the exclusive party?

miecznik

✓

✓
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Sneakers (1992)
“My voice is my passport, verify”



Block Cipher Modes of Operation

ì Electronic Code Book Mode (ECB) – Don’t use!
ì Cipher Block Chaining (CBC) – Good but inefficient
ì Propagating Cipher Block Chaining (PCBC)
ì Ciphertext Stealing (CTS)
ì Cipher Feedback (CFB)
ì Output Feedback (OFB)
ì Counter (CTR) - Good
ì … and more options that add authentication to the 

confidentiality already provided (will cover later)
ì CCM, GCM, CWC, EAX, IAPM, OCB….
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ì And this is one place where people make crypto mistakes
ì You don’t just pick AES, you pick AES+EBC, AES+CBC, etc…. L



Cipher Block Chaining (CBC) Mode
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ì Plaintext blocks are XORed with previous ciphertext block before being encrypted

ì First block is XORed with Initialization Vector (IV) – length of 1 block
ì Must be cryptographically random! (predictability here was cause BEAST of SSL/TLS attack)
ì Is not secret – typically prepended to ciphertext in plain text 



Cipher Block Chaining (CBC) Mode
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Counter (CTR) Mode

ì Developed by Whitfield Diffie and Martin Hellman, 
1979

ì Encrypt a {nonce, counter} value, then XOR with 
plaintext to yield ciphertext

ì The encrypted {nonce, counter} are like a pseudo-
OTP!

ì Operation
ì “Nonce” = IV (cryptographically random)
ì “Counter” is any sequence guaranteed not to 

repeat for long time (like a counter!)
ì Combine Nonce with Counter via concatenation

(upper and lower 64 bits)
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Counter (CTR) Mode
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Original Decrypted

Ciphertext – AES ECB Mode

Ciphertext – AES CTR Mode

Histogram

Histogram



Block Cipher w/Padding

ì Q: What if the plaintext size isn’t a multiple of the 
block size?

ì A: Need padding at end of plaintext data

ì Q: How do I distinguish my padding from the 
original plaintext? (for arbitrary plaintext)

ì A: PKCS#5 / PKCS#7 padding standard
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PKCS#7 Padding

ì Padding is in whole bytes.  Value of each added 
byte is number of bytes that are added

ì Note: Always pad
ì Even if plaintext is multiple of block size, in which 

case an entire block is added
ì AES block size: 128 bits (16 bytes), e.g  10 (hex)
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01
02 02
03 03 03
04 04 04 04
05 05 05 05 05
06 06 06 06 06 06
...

Need to pad by 1 byte?

Need to pad by 6 bytes?



(Native) Stream Ciphers

ì What about designing a cipher that doesn’t work 
with blocks at all?
ì Native Stream Cipher

ì Categories
ì Synchronous stream ciphers
ì Self-Synchronizing stream ciphers - rare
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Synchronous Stream Ciphers

ì Like a one-time pad, but with a pseudo-random pad 
generated by the cipher
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Native Stream Cipher Examples

ì Rivest Cipher 4 (RC4)
ì Designed by Ron Rivest (R in RSA)
ì Simple and fast in software and hardware J
ì Used in popular protocols like SSL, TLS, WEP, WPA J
ì Insecure  L

ì Break WPA-TKIP w/RC4 in under an hour
ì Break TLS-protected HTTP cookie in 75 hours
ì Prohibited in TLS in 2016+ 

(dropped by Chrome, Firefox, IE/Edge)
ì Shouldn’t be using WEP any more
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Research paper
Mathy Vanhoef and Frank Piessens. “All your biases belong to us: breaking RC4 in WPA-
TKIP and TLS.” In Proceedings of the 24th USENIX Conference on Security 
Symposium (SEC'15), Jaeyeon Jung (Ed.). USENIX Association, Berkeley, CA, USA, 2015

– Don’t use!



Native Stream Cipher Examples

ì Salsa20 and ChaCha20
ì Developed by DJB (NaCL author)

ì Secure (that we know…)
ì Useful features?

ì Jump to arbitrary location in bitstream and begin 
decryption (no need to decrypt from beginning)

ì Sections of ciphertext can be decrypted in parallel

ì Resistant to side channel attacks (all operations are 
constant time)

ì Competitive performance to AES, even without being 
hardware accelerated 
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