
ì
Stream Ciphers

Fall 2018Secure Software Systems

1

Stream Ciphers

ì Have: A stream of bits

ì Image, video, webpage, email, …

ì Want: A cipher that can take an unlimited (or at least
very long) stream of plaintext bits and encrypt

ì Idea: Divide incoming stream into blocks and encrypt
each separately via existing block cipher

ì Called Block Cipher Mode of Operation
ì First attempt: Electronic Code Book (ECB) mode

ì Note: These are not AES-specific – Modes of Operation
work for any block cipher

Fall 2018Secure Software Systems

2

Electronic Code Book Mode (ECB)

Fall 2018Secure Software Systems

3

Electronic Code Book (ECB) Mode

Fall 2018Secure Software Systems

4

Electronic Code Book Mode (ECB)

ì Electronic Code Book Mode (ECB) – Don’t use!

ì Two big problems
ì Same input block produces the same cipher block

each time
ì Replay attacks

Fall 2018Secure Software Systems

5

Identical Blocks

Fall 2018Secure Software Systems

6

Fall 2018Secure Software Systems

7

#!/usr/bin/python3
Jeff Shafer, University of the Pacific
Demo program illustrating information leakage
of block ciphers (e.g. AES) in ECB mode

Requires Python3 and PyCrypto
https://www.pycrypto.org

from Crypto.Cipher import AES
from hashlib import md5

Example image, 1418x779 pixels, 8 bit color depth
AES default block size of 128 bits will take this image
15 pixels at a time

file = open("pacific.bmp", "rb")
plaintext_original = file.read() + b'000000' # Pad length to multiple of 16. BMP files don't care.
##print(len(plaintext_original))

Generate a key for AES encryption/decryption
AES-128 key length is 16 bytes (128 bits)
key = md5("bogus garbage".encode('ascii')).hexdigest()

Encrypt with AES in ECB mode
cipher = AES.new(key, AES.MODE_ECB)
ciphertext = cipher.encrypt(plaintext_original)

"Cheat" for demo purposes - In order to view the ciphertext as a bitmap image,
we copy the bitmap header bytes (specifying dimensions, color depth, etc...)
from the unencrypted image and append the ciphertext after that.
Use the bless hex editor, look at offset 0xA, and that byte will
tell you where the actual image data starts after the header.
fake_ciphertext = plaintext_original[0:121] + ciphertext[122:]
file2 = open("pacific_encrypted.bmp", "wb")
file2.write(fake_ciphertext)

Decrypt
plaintext_final = cipher.decrypt(ciphertext)
plaintext_final = plaintext_final[:-6] # Cut off padding applied earlier

file3 = open("pacific_decrypted.bmp", "wb")
file3.write(plaintext_final)

Fall 2018Secure Software Systems

8

Original Decrypted

Ciphertext

Fall 2018Secure Software Systems

9

https://www.zerodayclothing.com/

https://www.zerodayclothing.com/

Replay Attack

Fall 2018Secure Software Systems

10

!
(alice)

"
(bob)

#
(eve)

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

What’s the password for
the exclusive party?

miecznik

Miecznik =
Polish word
for swordfish

"
(bob)

What’s the password for
the exclusive party?

miecznik

✓

✓

Fall 2018Secure Software Systems

11

Sneakers (1992)
“My voice is my passport, verify”

Block Cipher Modes of Operation

ì Electronic Code Book Mode (ECB) – Don’t use!
ì Cipher Block Chaining (CBC) – Good but inefficient
ì Propagating Cipher Block Chaining (PCBC)
ì Ciphertext Stealing (CTS)
ì Cipher Feedback (CFB)
ì Output Feedback (OFB)
ì Counter (CTR) - Good
ì … and more options that add authentication to the

confidentiality already provided (will cover later)
ì CCM, GCM, CWC, EAX, IAPM, OCB….

Fall 2018Secure Software Systems

12

Fall 2018Secure Software Systems

13

ì And this is one place where people make crypto mistakes
ì You don’t just pick AES, you pick AES+EBC, AES+CBC, etc…. L

Cipher Block Chaining (CBC) Mode

Fall 2018Secure Software Systems

14

ì Plaintext blocks are XORed with previous ciphertext block before being encrypted

ì First block is XORed with Initialization Vector (IV) – length of 1 block
ì Must be cryptographically random! (predictability here was cause BEAST of SSL/TLS attack)
ì Is not secret – typically prepended to ciphertext in plain text

Cipher Block Chaining (CBC) Mode

Fall 2018Secure Software Systems

15

Counter (CTR) Mode

ì Developed by Whitfield Diffie and Martin Hellman,
1979

ì Encrypt a {nonce, counter} value, then XOR with
plaintext to yield ciphertext

ì The encrypted {nonce, counter} are like a pseudo-
OTP!

ì Operation
ì “Nonce” = IV (cryptographically random)
ì “Counter” is any sequence guaranteed not to

repeat for long time (like a counter!)
ì Combine Nonce with Counter via concatenation

(upper and lower 64 bits)

Fall 2018Secure Software Systems

16

Counter (CTR) Mode

Fall 2018Secure Software Systems

17

Fall 2018Secure Software Systems

18

Original Decrypted

Ciphertext – AES ECB Mode

Ciphertext – AES CTR Mode

Histogram

Histogram

Block Cipher w/Padding

ì Q: What if the plaintext size isn’t a multiple of the
block size?

ì A: Need padding at end of plaintext data

ì Q: How do I distinguish my padding from the
original plaintext? (for arbitrary plaintext)

ì A: PKCS#5 / PKCS#7 padding standard

Fall 2018Secure Software Systems

19

PKCS#7 Padding

ì Padding is in whole bytes. Value of each added
byte is number of bytes that are added

ì Note: Always pad
ì Even if plaintext is multiple of block size, in which

case an entire block is added
ì AES block size: 128 bits (16 bytes), e.g 10 (hex)

Fall 2018Secure Software Systems

20

01
02 02
03 03 03
04 04 04 04
05 05 05 05 05
06 06 06 06 06 06
...

Need to pad by 1 byte?

Need to pad by 6 bytes?

(Native) Stream Ciphers

ì What about designing a cipher that doesn’t work
with blocks at all?
ì Native Stream Cipher

ì Categories
ì Synchronous stream ciphers
ì Self-Synchronizing stream ciphers - rare

Fall 2018Secure Software Systems

21

Synchronous Stream Ciphers

ì Like a one-time pad, but with a pseudo-random pad
generated by the cipher

Fall 2018Secure Software Systems

22

⊕Pi

ki

Ci!
(alice)

"
(bob)

(encrypted)(plaintext) ⊕ Pi

(plaintext)

#
(eve)

K C(key)

(pseudo-
random
pad)

ki

K C

(pseudo-
random
pad)

Native Stream Cipher Examples

ì Rivest Cipher 4 (RC4)
ì Designed by Ron Rivest (R in RSA)
ì Simple and fast in software and hardware J
ì Used in popular protocols like SSL, TLS, WEP, WPA J
ì Insecure L

ì Break WPA-TKIP w/RC4 in under an hour
ì Break TLS-protected HTTP cookie in 75 hours
ì Prohibited in TLS in 2016+

(dropped by Chrome, Firefox, IE/Edge)
ì Shouldn’t be using WEP any more

Fall 2018Secure Software Systems

23

Research paper
Mathy Vanhoef and Frank Piessens. “All your biases belong to us: breaking RC4 in WPA-
TKIP and TLS.” In Proceedings of the 24th USENIX Conference on Security
Symposium (SEC'15), Jaeyeon Jung (Ed.). USENIX Association, Berkeley, CA, USA, 2015

– Don’t use!

Native Stream Cipher Examples

ì Salsa20 and ChaCha20
ì Developed by DJB (NaCL author)

ì Secure (that we know…)
ì Useful features?

ì Jump to arbitrary location in bitstream and begin
decryption (no need to decrypt from beginning)

ì Sections of ciphertext can be decrypted in parallel

ì Resistant to side channel attacks (all operations are
constant time)

ì Competitive performance to AES, even without being
hardware accelerated

Fall 2018Secure Software Systems

24

