
ì
Key Exchange

Fall 2018Secure Software Systems

1

Challenge – Exchanging Keys

Fall 2018Secure Software Systems

2

!

" #

$

%

& !"#ℎ%&'() = & & − 1
2 =)6(6 − 1

2 = 15

The more parties in communication,
the more keys that need to be
securely exchanged

Do we have to use out-of-band
methods? (e.g., phone?)

Key Exchange

ì Insecure communica-ons
channel
ì Eve can see everything!

ì Alice and Bob agree on a
shared secret (“key”) that
Eve doesn’t know
ì Despite Eve seeing

everything!

Fall 2018Secure Software Systems

3

!
(alice)

"
(bob)

#
(eve)

Fall 2018Secure Software Systems

4

Proposed public key cryptography.
Diffie-Hellman key exchange.

Whitfield Diffie and Martin Hellman,
“New directions in cryptography,”
in IEEE Transactions on Information
Theory, vol. 22, no. 6, Nov 1976.

Diffie-Hellman Color Analogy

Fall 2018Secure Software Systems

5

(1) It’s easy to mix two colors: + =
(2) Mixing two or more colors
in a different order results in
the same color:

+ + =

+ + =

(3) Mixing colors is one-way
(Impossible to determine which colors went in to produce final result)

https://www.crypto101.io/

https://www.crypto101.io/

Diffie-Hellman Color Analogy

Fall 2018Secure Software Systems

6

!
(alice)

"
(bob)

#
(eve)

(1) Start with public color ▇ – share across network
(2) Alice picks secret color ▇ and mixes it to get ▇
(3) Bob picks secret color ▇ and mixes it to get ▇

+

=

Mix

+

=

Mix

$ $

Diffie-Hellman Color Analogy

Fall 2018Secure Software Systems

7

!
(alice)

"
(bob)

#
(eve)

(4) Alice and Bob exchange their mixed colors (▇,▇)
(5) Eve will see the mixed colors too (▇,▇)
(6) Alice adds her secret color ▇ to Bob’s mix ▇ = ▇
(7) Bob adds his secret color ▇ to Alice’s mix ▇ = ▇

Mix Mix

$ $

==
Eve can’t calculate ▇ !!

(secret keys were never shared)

Diffie-Hellman Color Analogy

Fall 2018Secure Software Systems

8

!
(alice)

"
(bob)

#

Mix

Mix

=
+

+

(order doesn’t matter)

=

=

Diffie-Hellman Math

Fall 2018Secure Software Systems

9

! ≡ ($%) '() (*)
y is defined as equal to gx modulo p
p = prime number (modulus)
g = base integer
x = random integer

Assumption: Computing y is easy!
But computing x given y, g, and p is very hard!

Discrete Logarithm Problem

Diffie-Hellman Math

Fall 2018Secure Software Systems

10

!
(alice)

"
(bob)

+

=

Mix

+

=

Mix

#

(1) Public color ▇ is a large prime number p and base g
(2) Alice secret color ▇ is random integer rA
(3) Bob secret color ▇ is random integer rB
(4) Alice mixed color ▇ is mA
(5) Bob mixed color ▇ is mB
(6) Exchange mA and mB

!" ≡ (%&') !)* (+)
!, ≡ (%&-) !)* (+)

Diffie-Hellman Math

Fall 2018Secure Software Systems

11

!
(alice)

"
(bob)

#

Mix

Mix+

+

=

=

!" ≡ $% &' $() (+)

!% = !"

!% ≡ $" &. $() (+)

Diffie-Hellman Math

ì Doesn’t have to be modular division
ì Could be elliptic curves
ì Could be supersingular isogeny key exchange
ì Could be <other math words>…

Fall 2018Secure So/ware Systems

12

ì
Public Key Cryptography

Fall 2018Secure Software Systems

13

Public Key Cryptography

ì Asymmetric cryptography

ì Sending data to Alice?
ì Use her public Key

ì Alice receives your data?
ì She decrypts it with her private key

Fall 2018Secure Software Systems

14

Fall 2018Secure Software Systems

15

RSA encryption method
First public key method

Ron L. Rivest, Adi Shamir, and Leonard
Adleman. A method for obtaining
digital signatures and public-key
cryptosystems. Communica)ons of the
ACM (February 1978)

Public-Key Algorithms

ì Key exchange algorithms
ì Allows two parties to agree on a shared secret across an

insecure medium
ì Example: Diffie-Hellman

ì Encryption algorithms
ì Allows sender to encrypt without having to agree first on

a shared secret
ì Example: RSA

ì Signature algorithms
ì Allows sender to sign information using sender’s private

key and receiver to validate using sender’s public key

Fall 2018Secure Software Systems

16

Public-Key Encryption

Fall 2018Secure So/ware Systems

17

Public key encryption is awesome!

Should we use it everywhere?

Caveat – Performance

ì Rarely use public key encryption by itself

ì Reasons:
ì Size (RSA can’t encrypt anything larger than its modulus,

i.e. 4096 bits)
ì Performance

ì RSA 2048 encryption: 0.08 megacycles/operation (256B)
ì RSA 2048 decryption: 3.25 megacycles/operation
ì AES-GCM: 2-4 cycles per byte

ì https://www.cryptopp.com/benchmarks.html

Fall 2018Secure Software Systems

18

Hybrid cryptosystem – Use public-key algorithms to coordinate keys,
and then use symmetric ciphers (shared key) for bulk operations

https://www.cryptopp.com/benchmarks.html

