
ì
Cryptographic Hash Functions

Fall 2018Secure Software Systems

1

Cryptographic Hash Functions

ì Input: Message of arbitrary size

ì Output: “Digest” (hashed output) of fixed size

Fall 2018Secure Software Systems

2

Loreum ipsum 23sdfw83x8mjyacd6Hash Function

(message of arbitrary size) (digest of fixed size)

Cryptographic Hash Functions

ì Design Goals
ì Computing hash should be computationally cheap
ì Reversing hash should be computationally

expensive (“impossible”) – One-way function

Fall 2018Secure Software Systems

3

Loreum ipsum 23sdfw83x8mjyacd6Hash Function

(message of arbitrary size) (digest of fixed size)

Cryptographic Hash Functions

ì Design Goals
ì Changing the message a small amount should

produce a large change in the digest
ì Each bit in digest has 50% chance of flipping

Fall 2018Secure Software Systems

4

Loreum ipsum 4ddf71e68243fb48Hash Function

Loreum Ipsum ce9c25cef29a8ea2Hash Function

Cryptographic Hash Functions

ì Design Goals
ì It should be very (very very VERY) hard to find two

different messages that have the same digest

Fall 2018Secure Software Systems

5

Cryptographic Hash Uses

ì Security
ì Digital signatures
ì Message authentication

ì General computing
ì Detect duplicate files
ì Detect file changes/corruption
ì Index data in hash tables

Fall 2018Secure Software Systems

6

Cryptographic Hash Functions

ì MD5 – Don’t use!
ì Input → 128 bit digest

ì SHA-1 – Don’t use!
ì Input → 160-bit digest

ì Google, Apple, Microsoft, Mozilla retired support for
SHA-1 signed SSL/TSL certificates in ‘16-’17

ì Vulnerable to collision attacks

ì Attackers have made fake SSL certificates

Fall 2018Secure Software Systems

7

Fall 2018Secure Software Systems

8

https://shattered.io/
February 2017

https://shattered.io/

Fall 2018Secure Software Systems

9

Google produced two different PDFs with same SHA-1 hash as proof of danger
Required 9,223,372,036,854,775,808 SHA1 computations
110 years of Single-GPU computation (but Google has more than one GPU...)

https://shattered.io/
February 2017

https://shattered.io/

Cryptographic Hash Functions

ì SHA-2 family – Safe (except for length extension)
ì SHA-256 (256-bit digest, optimized for 32-bit CPUs)
ì SHA-512 (512-bit digest, optimized for 64-bit CPUs)

ì SHA-3 – Safe (including against length extension)
ì NIST Hash function competition (2007-2012)

ì 51 entries round 1, 14 round 2, 5 finalists
ì Winner: Keccak algorithm

ì Efficient in hardware but slow in software
ì SHA3-256, SHA3-512, …

ì Blake2 – Safe
ì Another SHA-3 finalist

Fall 2018Secure Software Systems

10

Length Extension Attacks

ì Older hash algorithms output their entire internal state
as the hash digest
ì Attack: Pick up exactly where they left off!

(Reconstruct internal state from hash digest)

Fall 2018Secure Software Systems

11

Plaintext Hash (md5, SHA-1, SHA-2)
FundsXfer:Account
123456:Amount:123

4ddf71e68243fb48ce9c25cef29a8ea2

FundsXfer:Account
123456:Amount:123000

Load hash function with state of
4ddf71e68243fb48ce9c25cef29a8ea2
Continue running hash function over extension
attack digits 000
New hash:
30c6ae0de5369c2637d5c541ef0095d8

!

Length Extension Attacks

ì HashPump: A tool to exploit the hash length

extension attack in various hashing algorithms.

ì Currently supported algorithms: MD5, SHA1,

SHA256, SHA512 (i.e. SHA2 variants)
ì https://github.com/bwall/HashPump

ì Real-world attacks require a bit of brute forcing

(trial and error) to reconstruct hash state but

nothing impossible

Fall 2018Secure Software Systems

12

https://github.com/bwall/HashPump

ì
Password Storage

Fall 2018Secure Software Systems

13

Password Storage

Fall 2018Secure Software Systems

14

We agree that it’s horrible to store
plaintext passwords in a database, yes?

ì Database theft instantly gives attacker all user
passwords L
ì Attacker could be rogue system administrator… L

ì Humans re-use passwords across many sites L

ì Does a website password reset tool email you your
original password? RUN!!!

!

Password Storage

ì Encrypting the entire database doesn’t help
ì Attacker could easily steal encryption keys along

with database – keys must be in the system
somewhere

ì Encrypting individual passwords is a similar
headache
ì Where to store the keys?
ì How to keep the keys safe?
ì So many keys!!

Fall 2018Secure Software Systems

15

!

Warning!

Fall 2018Secure Software Systems

16

Warning: Cryptographic Hashes for
password storage are wrong!

Can hashes help us?

Password Storage

Fall 2018Secure Software Systems

17

“Swordfish” 4ddf71e68243fb4Hash Function

alice@abc.com
password:!

ì Alice’s plaintext password can’t be instantly
reversed from the hash if database stolen

ì But what if Bob has the same password? He will
have the same hash L

Password Storage

ì Humans choose terrible passwords:
ì password, swordfish,

passw0rd, etc…

ì There are only a few plausible hash
functions in widespread use

ì Attackers can pre-compute hashes
for likely passwords (dictionary
words and permutations)
ì Save in “rainbow table”
ì Search for a quick match!

Fall 2018Secure Software Systems

18

Password Lists

ì Large lists of likely passwords are assembled by
attackers from prior password leaks (real-world
data)

ì Free/cheap option for your downloading
convenience
ì https://crackstation.net/buy-crackstation-wordlist-

password-cracking-dictionary.htm

ì 15GB uncompressed

ì Starting guessing at “password123” instead of
“aaaaaaaa”

Fall 2018Secure Software Systems

19

https://crackstation.net/buy-crackstation-wordlist-password-cracking-dictionary.htm

Password Storage

ì Improvement: Don’t hash {password}
ì Instead hash {salt | password}

ì “Salt” is large (160 bit) cryptographically
random number appended/prepended to
password

ì Best practice
ì Unique salt per user, not per-system
ì Store this in database along with hash

ì Rainbow tables now worthless
ì Would need a rainbow table for each

2160 salt values)

Fall 2018Secure Software Systems

20

Fall 2018Secure Software Systems

21

Password Storage

ì Many systems use just a single salt, so an attacker
only needs to compute one rainbow table L

ì Per-user salts are still fundamentally broken, just
harder to crack L
ì Cryptographic hash functions are intended to be fast
ì Attackers that steal your database also have your

salt. With GPUs they can brute-force all possible
passwords (following the password list and
permutations)

ì Broken? Not instantly. But vulnerable? Yes

Fall 2018Secure Software Systems

22

Password Storage

Fall 2018Secure Software Systems

23

“Please stop hashing passwords”
https://blog.tjll.net/please-stop-hashing-passwords/

!

https://blog.tjll.net/please-stop-hashing-passwords/

Password Storage

ì Password storage should use a Key Derivation
Function (KDF) instead
ì It looks like a hash function, but has a completely

different design goal

ì Design goals
ì KDF: hard to compute

ì Ideally, as slow as your users will tolerate without
switching to a competitor’s product!

ì Cryptographic hash: Easy to compute

Fall 2018Secure Software Systems

24

Key Derivation Functions

ì Bcrypt – good
ì Tunable time-hard – you can configure how much

CPU time it takes to calculate a hash key
ì CPUs getting faster? Tune bcrypt to take more time!

ì Scrypt – good
ì Tunable time (CPU) and space (memory) hard
ì GPUs brute-forcing is hampered due to memory

requirements

ì Important: Still use salt with KDF algorithms

Fall 2018Secure Software Systems

25

Key Derivation Functions

Fall 2018Secure Software Systems

26

https://blog.tjll.net/please-stop-hashing-passwords/
(CORS policy requires changing JavaScript to load JSON

over HTTPS to get interactive graph to appear…)

Comparing hash functions by time to generate digest
md5, sha1, sha2, sha3, pbkdf2

How do you think bcrypt and
scrypt will compare?

https://blog.tjll.net/please-stop-hashing-passwords/

Key Derivation Functions

Fall 2018Secure Software Systems

27

https://blog.tjll.net/please-stop-hashing-passwords/
(CORS policy requires changing JavaScript to load JSON

over HTTPS to get interactive graph to appear…)

Original hashes (md5, sha1, sha2, sha3, pbkdf2)
are not even visible at the bottom!

Y-axis (original): 0.00 – 0.25s
Y-axis (new): 0-600s

https://blog.tjll.net/please-stop-hashing-passwords/

Key Derivation Functions

ì Ruby script to generate your own dataset
ì https://gist.github.com/tylerjl/10802499

Fall 2018Secure Software Systems

28

https://gist.github.com/tylerjl/10802499

