
ì
Secure Software Systems
CYBR 200  |  Fall 2018  |  University of the Pacific  |  Jeff Shafer

Cryptography
Libraries



Fall 2018Secure Software Systems

2

Let’s start using cryptography in our 
programs!



Hybrid Cryptography

ì Take message and encrypt with random symmetric 
key

ì Take symmetric key and encrypt with asymmetric 
public key of recipient

ì Security of asymmetric key exchange  ✓
ì Performance of symmetric encryption ✓

Fall 2018Secure Software Systems

3



Fall 2018Secure Software Systems

4

What library should we use to 
accomplish this?

Hmmmn, let’s search for crypto library…



Fall 2018Secure Software Systems

5

https://www.cryptopp.com/

How does this library look?

https://www.cryptopp.com/


Fall 2018Secure Software Systems

6

https://www.cryptopp.com/

How does this library look?

https://www.cryptopp.com/


Fall 2018Secure Software Systems

7

So many options!!

More options is good, right?



Library Primitives

ì How to accomplish hybrid cryptography with a traditional (low-
level) library
ì Choose algorithms and parameters, e.g. AES 256 bit, RSA 4096 bit 

etc.
ì Generate RSA key pair
ì Generate random AES key and nonce
ì Use AES key to encrypt data
ì Hash encrypted data
ì Read RSA private key from wire format
ì Use key to sign hash
ì Read recipient’s public key from wire format
ì Use public key to encrypt AES key and signature

ì Many parameters and options to select along the way!

Fall 2018Secure Software Systems

8

“Crypto is Broken or How to Apply Secure Crypto as a Developer”
https://blog.codecentric.de/en/2014/03/crypto-broken-apply-secure-crypto-developer/

https://blog.codecentric.de/en/2014/03/crypto-broken-apply-secure-crypto-developer/


Developers 101

Fall 2018Secure Software Systems

9

Answer:
It's a low-level crypto library that leaves avoidance of 
virtually all the exploitable crypto mistakes as an 
exercise for the programmer.  !

Question: 
“What is wrong with mcrypt?”

From Hacker News thread on cryptography

https://paragonie.com/blog/2015/05/if-you-re-typing-word-mcrypt-into-your-code-you-re-doing-it-wrong

(One of several PHP libraries for encryption)

https://paragonie.com/blog/2015/05/if-you-re-typing-word-mcrypt-into-your-code-you-re-doing-it-wrong


Developers 101

Fall 2018Secure Software Systems

10

You should never type A… E… S…. 
into your code anywhere!

And you should really never type 
D…E…S… into your code 

And you should think twice before 
type M..D…5 or S..H..A… as well



ì
NaCL – our Utopia?

Fall 2018Secure Software Systems

11

Robert McCall, “The Prologue and the Promise”



NaCL

ì Not Another Crypto Library (or “Salt”)
ì https://nacl.cr.yp.to/

ì Released by Daniel J. Bernstein (DJB) in 
2011
ì Mathematician and cryptographer
ì Research professor at University of Illinois 

at Chicago
ì https://cr.yp.to/djb.html
ì He’s like the “Richard Stallman” (GNU 

Founder) of cryptography

Fall 2018Secure Software Systems

12

https://nacl.cr.yp.to/
https://cr.yp.to/djb.html


Bernstein v. United States (1996)

Fall 2018Secure Software Systems

13

While a graduate student at the University of California at Berkeley, Bernstein completed 
the development of an encryption equation (an "algorithm") he calls "Snuffle." Bernstein 
wishes to publish a) the algorithm (b) a mathematical paper describing and explaining the 
algorithm and (c) the "source code" for a computer program that incorporates the 
algorithm. Bernstein also wishes to discuss these items at mathematical conferences, 
college classrooms and other open public meetings. The Arms Export Control Act and the 
International Traffic in Arms Regulations (the ITAR regulatory scheme) required Bernstein 
to submit his ideas about cryptography to the government for review, to register as an 
arms dealer, and to apply for and obtain from the government a license to publish his 
ideas. Failure to do so would result in severe civil and criminal penalties. Bernstein 
believes this is a violation of his First Amendment rights and has sued the government.

https://www.eff.org/cases/bernstein-v-us-dept-justice

https://www.eff.org/cases/bernstein-v-us-dept-justice


Bernstein v. United States (1996)

ì Ruling by 9th Circuit Court of Appeals

Fall 2018Secure Software Systems

14

Software source code is speech protected by the 
First Amendment and government regulations 
preventing its publication were unconstitutional

https://www.eff.org/deeplinks/2015/04/remembering-case-established-code-speech

“This court can find no meaningful difference between computer 
language, particularly high-level languages as defined above, and 
German or French....Like music and mathematical equations, 
computer language is just that, language, and it communicates 
information either to a computer or to those who can read it...”

-Judge Patel, April 15, 1996

https://www.eff.org/deeplinks/2015/04/remembering-case-established-code-speech


NaCL Properties

ì Expert selection of default primitives

Fall 2018Secure Software Systems

15

Typical cryptographic libraries force the programmer to specify choices 

of cryptographic primitives: e.g., “sign this message with 4096-bit RSA 

using PKCS #1 v2.0 with SHA-256.”

Most programmers using cryptographic libraries are not expert 

cryptographic security evaluators. L

Often programmers pass the choice along to users—who usually 

have even less information about the security of cryptographic 

primitives. L

https://nacl.cr.yp.to/features.html

https://nacl.cr.yp.to/features.html


NaCL Properties

ì High-level primitives instead of low-level operations
ì Tiny number of functions!

ì High-speed implementation

ì Automatic CPU-specific tuning

ì Resistant to side-channel timing attacks
ì No data-dependent branches
ì No data-dependent array indices
ì No dynamic memory allocation

Fall 2018Secure Software Systems

16

https://nacl.cr.yp.to/features.html

https://nacl.cr.yp.to/features.html


Challenges

ì Implementation not portable/cross-platform

ì Implementation is not a shared library

ì Implementation difficult to package due to build 
system and compilation requirements

ì System designed as a research exercise, instead of for 
programmers

Fall 2018Secure Software Systems

17



ì
Libsodium

Fall 2018Secure Software Systems

18



Libsodium

ì Cross-platform fork of NaCL with API bindings for 
common programming languages beyond C/C++
ì http://www.libsodium.org
ì https://github.com/jedisct1/libsodium

ì Uses same implementation of crypto primitives as 
NaCL

ì Passed security audit
ì https://www.privateinternetaccess.com/blog/2017/

08/libsodium-audit-results/

Fall 2018Secure Software Systems

19

http://www.libsodium.org/
https://github.com/jedisct1/libsodium
https://www.privateinternetaccess.com/blog/2017/08/libsodium-audit-results/


Libsodium Features

ì Authenticated public-key encryption

ì Authenticated shared-key encryption (symmetric) 

ì Hashing / keyed hashing

ì Cryptographically secure PRNG

Fall 2018Secure Software Systems

20



Libsodium Algorithm – Public Key 

ì Asymmetric encryption: Curve25519
ì Elliptic curve Diffie-Hellman key agreement (X25519)

ì Why?
ì Not patent encumbered
ì No “secret constants” that were “helpfully” suggested by 

the NSA with no documentation on why they were 
selected

ì Used where?
ì https://ianix.com/pub/curve25519-deployment.html
ì Libsodium, OpenSSL, LibreSSL, libssh, …
ì Standard in TLS 1.3
ì OpenSSH, iOS, Signal messenger, WhatsApp

Fall 2018Secure Software Systems

21

https://ianix.com/pub/curve25519-deployment.html


Libsodium Algorithm – Secret Key 

ì Symmetric Encryption: Salsa20 stream cipher
ì Not AES (Should we care?)

ì Positive opinion (from DJB, author)
https://cr.yp.to/streamciphers/why.html

ì Neutral opinion (from Matthew Green, cryptographer)
https://blog.cryptographyengineering.com/2012/10/0
9/so-you-want-to-use-alternative-cipher/ (

ì Standardized in European eSTREAM cipher 
competition

ì Message Authentication: Poly1305 MAC

Fall 2018Secure Software Systems

22

https://cr.yp.to/streamciphers/why.html
https://blog.cryptographyengineering.com/2012/10/09/so-you-want-to-use-alternative-cipher/


Libsodium Languages

ì C (Native, API Provided)

ì Bindings for other languages

ì Python

ì PyNaCL - https://github.com/pyca/pynacl

ì LibNaCL - https://github.com/saltstack/libnacl

ì Csodium – Not suggested (limited feature subset)

ì Pysodium – Not suggested (only for Python 2.7)

ì .NET, Go, Java, Ruby, Rust, Swift, …

ì https://download.libsodium.org/doc/bindings_for_other

_languages/

Fall 2018Secure Software Systems

23

https://github.com/pyca/pynacl
https://github.com/saltstack/libnacl
https://download.libsodium.org/doc/bindings_for_other_languages/


Installation Instructions

Fall 2018Secure Software Systems

24

C:
$ sudo apt-get install build-essentials
$ wget https://download.libsodium.org/libsodium/releases/LATEST.tar.gz
$ tar -xzf LATEST.tar.gz
$ cd libsodium-stable
$ ./configure
$ make && make check
# Should see following printed after test suite runs: PASS: 70
$ sudo make install

Python:
$ sudo apt-get install python3
$ pip3 install --upgrade pip
$ pip3 install pynacl
$ pip3 install --upgrade pynacl

https://download.libsodium.org/libsodium/releases/LATEST.tar.gz

