Secure Software Systems

CYBR 200 | Fall 2018 | University of the Pacific | Jeff Shafer

Cryptography
Libraries

Let’s start using cryptography in our
programs!

Hybrid Cryptography

Take message and encrypt with random symmetric
key

Take symmetric key and encrypt with asymmetric
public key of recipient

Security of asymmetric key exchange

Performance of symmetric encryption v

What library should we use to
accomplish this?

Hmmmn, let’s search for crypto library...

Google

How does this library look? ‘

Crypto++® Library 5.6.5

Crypto++ Library is a free C++ class library of cryptographic schemes. The library contains the following algorithms:

Algorithm

Name

authenticated encryption schemes

GCM, CCM, EAX, OCB

high speed stream ciphers

ChaCha (ChaCha8/12/20), Panama, Sosemanuk, Salsa20, XSalsa20

AES and AES candidates

AES (Rijndael), RC6, MARS, Twofish, Serpent, CAST-256

other block ciphers

ARIA, IDEA, Triple-DES (DES-EDE2 and DES-EDE3), Camellia, SEED, Kalyna, RC5, Blowfish, TEA,
Threefish, Skipjack, SHACAL-2, XTEA

block cipher modes of operation

ECB, CBC, CBC ciphertext stealing (CTS), CFB, OFB, counter mode (CTR)

message authentication codes

VMAC, HMAC, GMAC (GCM), CMAC, CBC-MAC, DMAC, Two-Track-MAC, BLAKE2 (BLAKE2b,
BLAKEZ2s), Poly1305, SipHash

hash functions

BLAKE?2 (BLAKE2b, BLAKEZ2s), Keccack (F1600), SHA-1, SHA-2, SHA-3, Tiger, WHIRLPOOL,
RIPEMD-128, RIPEMD-256, RIPEMD-160, RIPEMD-320

public-key cryptography

RSA, DSA, Determinsitic DSA, ElIGamal, Nyberg-Rueppel (NR), Rabin-Williams (RW), EC-based
German Digital Signature (ECGDSA), LUC, LUCELG, DLIES (variants of DHAES), ESIGN

padding schemes for public-key systems

PKCS#1 v2.0, OAEP, PSS, PSSR, IEEE P1363 EMSA2 and EMSA5

key agreement schemes

Diffie-Hellman (DH), Unified Diffie-Hellman (DH2), Menezes-Qu-Vanstone (MQV), Hashed MQV
(HMQV), Fully Hashed MQV (FHMQV), LUCDIF, XTR-DH

elliptic curve cryptography

ECDSA, Determinsitic ECDSA, ECGDSA, ECNR, ECIES, ECDH, ECMQV

insecure or obsolescent algorithms retained for
backwards compatibility and historical value

3-WAY, GOST, SHARK, CAST-128, Square

https://www.cryptopp.com/

https://www.cryptopp.com/

How does this library look? ‘ 6

Other features include:

¢ pseudo random number generators (PRNG): ANSI X9.17 appendix C, RandomPool, VIA Padlock, RDRAND, RDSEED, NIST Hash and HMAC DRBGs
e password based key derivation functions: PBKDF1 and PBKDF2 from PKCS #5, PBKDF from PKCS #12 appendix B, HKDF from RFC 5869
¢ Shamir's secret sharing scheme and Rabin's information dispersal algorithm (IDA)
» fast multi-precision integer (bignum) and polynomial operations
« finite field arithmetics, including GF(p) and GF(2/n)
e prime number generation and verification
¢ useful non-cryptographic algorithms
o DEFLATE (RFC 1951) compression/decompression with gzip (RFC 1952) and zlib (RFC 1950) format support
o Hex, base-32, base-64, URL safe base-64 encoding and decoding
o 32-bit CRC, CRC-C and Adler32 checksum
¢ class wrappers for these operating system features (optional):
o high resolution timers on Windows, Unix, and Mac OS
o Berkeley and Windows style sockets
o Windows named pipes
/dev/random, /dev/urandom, /dev/srandom
o Microsoft's CryptGenRandom and BCryptGenRandom on Windows
* x86, x64 (x86-64), x32 (ILP32), ARM-32, Aarch32, Aarch64 and Power8 in-core code for the commonly used algorithms
o run-time CPU feature detection and code selection
o supports GCC-style and MSVC-style inline assembly, and MASM for x64
o x86, x64 (x86-64), x32 provides MMX, SSE2, and SSE4 implementations
o ARM-32, Aarch32 and Aarch64 provides NEON, ASIMD and ARMv8 implementations
o Power8 provides in-core AES using NX Crypto Acceleration
* A high level interface for most of the above, using a filter/pipeline metaphore
e benchmarks and validation testing

o

https://www.cryptopp.com/

https://www.cryptopp.com/

So many options!!

More options is good, right?

Library Primitives

How to accomplish hybrid cryptography with a traditional (low-

level) library

72 Choose algorithms and parameters, e.g. AES 256 bit, RSA 4096 bit
etc.

7 Generate RSA key pair

72 Generate random AES key and nonce

72 Use AES key to encrypt data

7 Hash encrypted data

7 Read RSA private key from wire format

72 Use key to sign hash

7 Read recipient’s public key from wire format

72 Use public key to encrypt AES key and signature

Many parameters and options to select along the way!

“Crypto is Broken or How to Apply Secure Crypto as a Developer”
https://blog.codecentric.de/en/2014/03/crypto-broken-apply-secure-crypto-developer/

https://blog.codecentric.de/en/2014/03/crypto-broken-apply-secure-crypto-developer/

Developers 101

From Hacker News thread on cryptography

Question:
“What is wrong with mcrypt?”

(One of several PHP libraries for encryption)

Answer:
It's a low-level crypto library that leaves avoidance of

virtually all the exploitable crypto mistakes as an
exercise for the programmer. &

https://paragonie.com/blog/2015/05/if-you-re-typing-word-mcrypt-into-your-code-you-re-doing-it-wrong

https://paragonie.com/blog/2015/05/if-you-re-typing-word-mcrypt-into-your-code-you-re-doing-it-wrong

10

Developers 101

You should never type A... E... S....
into your code anywhere!

And you should really never type
D...E...S... into your code

And you should think twice before
type M..D...5 or S..H..A... as well

NaCL — our Utopia?

Secure Software Systems Fall 2018

Not Another Crypto Library (or “Salt”)
72 https://nacl.cryp.to/

Released by Daniel J. Bernstein (DJB) in
2011

72 Mathematician and cryptographer

? Research professor at University of lllinois
at Chicago

https://cr.yp.to/djb.html

He's like the “Richard Stallman” (GNU
Founder) of cryptography

N

N

https://nacl.cr.yp.to/
https://cr.yp.to/djb.html

Bernstein v. United States (1996)

While a graduate student at the University of California at Berkeley, Bernstein completed
the development of an encryption equation (an "algorithm") he calls "Snuffle." Bernstein
wishes to publish a) the algorithm (b) a mathematical paper describing and explaining the
algorithm and (c) the "source code" for a computer program that incorporates the
algorithm. Bernstein also wishes to discuss these items at mathematical conferences,
college classrooms and other open public meetings. The Arms Export Control Act and the
International Traffic in Arms Regulations (the ITAR regulatory scheme) required Bernstein
to submit his ideas about cryptography to the government for review, to register as an
arms dealer, and to apply for and obtain from the government a license to publish his
ideas. Failure to do so would result in severe civil and criminal penalties. Bernstein
believes this is a violation of his First Amendment rights and has sued the government.

https://www.eff.org/cases/bernstein-v-us-dept-justice

https://www.eff.org/cases/bernstein-v-us-dept-justice

Bernstein v. United States (1996)

71 Ruling by 9th Circuit Court of Appeals

Software source code is speech protected by the

First Amendment and government regulations
preventing its publication were unconstitutional

“This court can find no meaningful difference between computer
language, particularly high-level languages as defined above, and
German or French....Like music and mathematical equations,
computer language is just that, language, and it communicates
information either to a computer or to those who can read it...”
-Judge Patel, April 15, 1996

https://www.eff.org/deeplinks/2015/04/remembering-case-established-code-speech

Secure Software Systems Fall 2018

https://www.eff.org/deeplinks/2015/04/remembering-case-established-code-speech

NaCL Properties

Expert selection of default primitives

Typical cryptographic libraries force the programmer to specify choices
of cryptographic primitives: e.g., “sign this message with 4096-bit RSA
using PKCS #1 v2.0 with SHA-256."

Most programmers using cryptographic libraries are not expert
cryptographic security evaluators. ®

Often programmers pass the choice along to users—who usually
have even less information about the security of cryptographic
primitives. ®

https://nacl.cr.yp.to/features.html

https://nacl.cr.yp.to/features.html

NaCL Properties

High-level primitives instead of low-level operations
?2 Tiny number of functions!

High-speed implementation
Automatic CPU-specific tuning

Resistant to side-channel timing attacks
72 No data-dependent branches

72 No data-dependent array indices

72 No dynamic memory allocation

https://nacl.cr.yp.to/features.html

https://nacl.cr.yp.to/features.html

Challenges

Implementation not portable/cross-platform
Implementation is not a shared library

Implementation difficult to package due to build
system and compilation requirements

System designed as a research exercise, instead of for
programmers

18

.

Libsodium

Cross-platform fork of NaCL with API bindings for
common programming languages beyond C/C++

2 http://www.libsodium.org
2 https://github.com/jedisct1/libsodium

Uses same implementation of crypto primitives as
NaCL

Passed security audit

2 https://www.privateinternetaccess.com/blog/2017/
08/libsodium-audit-results/

http://www.libsodium.org/
https://github.com/jedisct1/libsodium
https://www.privateinternetaccess.com/blog/2017/08/libsodium-audit-results/

Libsodium Features

Authenticated public-key encryption
Authenticated shared-key encryption (symmetric)
Hashing / keyed hashing

Cryptographically secure PRNG

Libsodium Algorithm — Public Key

72 Asymmetric encryption: Curve25519

? Elliptic curve Diffie-Hellman key agreement (X25519)
Why?
72 Not patent encumbered

72 No “secret constants” that were “helpfully” suggested by
the NSA with no documentation on why they were
selected

Used where?

A https://ianix.com/pub/curve25519-deployment.html
? Libsodium, OpenSSL, LibreSSL, libssh, ...

Standardin TLS 1.3

2 OpenSSH, iOS, Signal messenger, WhatsApp

https://ianix.com/pub/curve25519-deployment.html

Libsodium Algorithm — Secret Key

Symmetric Encryption: Salsa20 stream cipher
7 Not AES (Should we care?)

Positive opinion (from DJB, author)
https://cr.yp.to/streamciphers/why.html

Neutral opinion (from Matthew Green, cryptographer)
https://blog.cryptographyengineering.com/2012/10/0
9/so-you-want-to-use-alternative-cipher/ (

Standardized in European eSTREAM cipher
competition

Message Authentication: Poly1305 MAC

https://cr.yp.to/streamciphers/why.html
https://blog.cryptographyengineering.com/2012/10/09/so-you-want-to-use-alternative-cipher/

Libsodium Languages

C (Native, APl Provided)
Bindings for other languages

Python

A PyNaCL - https://github.com/pyca/pynacl

? LibNaCL - https://github.com/saltstack/libnacl

? Csodium — Not suggested (limited feature subset)
? Pysodium — Not suggested (only for Python 2.7)

.NET, Go, Java, Ruby, Rust, Swift, ...

2 https://download.libsodium.org/doc/bindings for other
languages/

https://github.com/pyca/pynacl
https://github.com/saltstack/libnacl
https://download.libsodium.org/doc/bindings_for_other_languages/

Installation Instructions

sudo apt-get install build-essentials

wget https://download.libsodium.org/libsodium/releases/LATEST.tar.gz
tar -xzf LATEST.tar.gz

cd libsodium-stable

./configure

make && make check

Should see following printed after test suite runs: PASS: 70

sudo make install

-(/}:142-(/}-(/}-(/}-(/}-(/}-(/}_(?

Python:

$ sudo apt-get install python3
$ pip3 install --upgrade pip

$ pip3 install pynacl

$ pip3 install --upgrade pynacl

https://download.libsodium.org/libsodium/releases/LATEST.tar.gz

