
ì
Developer Cryptography Mistakes

Fall 2018Secure Software Systems

1

Top 10 Developer Crypto Mistakes

1. Hard-coded keys

2. Improperly choosing an IV

3. ECB mode of operation

4. Wrong use or misuse of a
cryptographic primitive for
password storage

5. Passwords are not
cryptographic keys

6. MD5 just won’t die. And
SHA1 needs to go too!

7. Assuming encryption
provides message integrity

8. Asymmetric key sizes too
small

9. Insecure randomness

10. “Crypto soup”

Fall 2018Secure Software Systems

2

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

Hard Coded Keys

ì Don’t hard-code keys into your programs

ì Problem 1: Whoever has the code knows the keys to
decrypt the data

ì Should your developers have access to production data?
Probably not…

ì Problem 2: Key management challenge

ì If key is compromised, replacing it requires releasing a
new program binary (time consuming)

ì Best practice: Never seen by human eyes, never saved to
disk

Fall 2018Secure Software Systems

3

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

Improperly Choosing an IV

ì Don’t hard-code your initialization vector
ì Should not be all-zero either!
ì Should not be predictable!

ì Problem: Constant IV negates cryptography
ì Example: BEAST SSL attack where developers used

ciphertext from prior block as IV for next block – IV was
now predictable!

ì https://blog.cryptographyengineering.com/2011/09/21/b
rief-diversion-beast-attack-on-tlsssl/

ì Best practice: Cryptographically secure random number
generator each time

Fall 2018Secure Software Systems

4

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

https://blog.cryptographyengineering.com/2011/09/21/brief-diversion-beast-attack-on-tlsssl/
https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

ECB Mode of Operation

ì Don’t use ECB mode! (Electronic Code Book)

Fall 2018Secure Software Systems

5

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

Don’t Hash Passwords!

ì Don’t use a hashing function! (MD5, SHA1, SHA256, …)
ì Problem: Compute too quickly

ì Don’t use the same salt for each password!
ì Problem: Identical passwords will map to identical hash

values

ì https://www.troyhunt.com/our-password-hashing-has-no-clothes/

ì Best practice: KDF (bcrpt, scrypt, argon2, …) + random
salt for each password

Fall 2018Secure Software Systems

6

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

https://www.troyhunt.com/our-password-hashing-has-no-clothes/
https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

Passwords Are Not Cryptographic Keys

ì Don’t Use Passwords (directly) as a Cryptographic Key
ì Password:

ì Remembered by humans

ì Arbitrary length

ì Low entropy / brute force (for 90%+ of the passwords)
ì Key:

ì Used by machines

ì Fixed length

ì Should be full entropy

ì Best practice: KDF (bcrpt, scrypt, argon2, …) + random
salt for each password

Fall 2018Secure Software Systems

7

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

MD5 Just Won’t Die.
And SHA1 Needs to Go Too!

ì Don’t use MD5
ì Broken due to collisions (2005)

ì Don’t use SHA1
ì Broken due to collisions
ì SHATTERED demonstration (2017)

(Two PDFs w/identical SHA1 but different content)

ì Best practice: SHA2, SHA3

Fall 2018Secure Software Systems

8

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

Assuming Encryption Provides
Message Integrity

ì Encryption ≠ Authentication

ì Encryption provides confidentiality, but an attacker
can modify ciphertext

ì Modified ciphertext typically decodes as garbage,
but attacker can try many attempts until garbage
causes adverse behavior (bug) in program

ì Best practices:
ì Authentication + Encryption: GCM, CCM
ì Authentication-only: GMAC, HMAC

Fall 2018Secure Software Systems

9

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

Asymmetric Key Sizes Too Small

ì Don’t Use Too Short of Keys!

ì Problem: GPUs are too parallel / brute forcing is
possible for short keys

ì https://www.keylength.com

ì Minimums (2017, IAD-NSA)
ì Symmetric ciphers: 256 bit minimum
ì Elliptic Curve Ciphers: 384 bit minimum
ì Hash: 384 bit minimum (so no SHA-256)

Fall 2018Secure Software Systems

10

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

https://www.keylength.com/
https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

Insecure Randomness

ì Don’t Use a Pseudo-Random Generator!
ì “Looks Random-ish” ≠ “Random”

ì Best practice: OS-provided mechanism
ì Accept no substitutes!

(unless you have a fleet of lava lamps)
ì Cryptographically secure random number generator

Fall 2018Secure Software Systems

11

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

Crypto Soup

ì No “Crypto Soup”

ì No “Buzzword Salad”

ì Don’t mix a bunch of crypto
primitives together without a
clear goal

Fall 2018Secure Software Systems

12

ì
Bonus Mistakes!

Fall 2018Secure Software Systems

13

Insecure By Default

ì Don’t be Insecure by Default
ì Security should not be optional
ì Security should not be configurable
ì Security should not be an advanced mode described

in Chapter 14 of the manual

ì There should be one mode of operation, and it
should be secure

ì Bonus! Safe from rollback attacks (where threat
triggers a rollback to insecure crypto)

Fall 2018Secure Software Systems

14

Traffic Analysis

ì Traffic analysis is still possible on encrypted data!
ì Who sent it? Who received it?
ì When was it sent?
ì How much was sent?
ì Metadata

ì Example: SSH protocol reveals timing between
keystrokes when user enters password
ì https://www.usenix.org/legacy/events/sec01/full_p

apers/song/song.pdf
ì Timing leak – another form of side channel attack

Fall 2018Secure Software Systems

15

https://www.usenix.org/legacy/events/sec01/full_papers/song/song.pdf

Not Using Best Algorithm Available

ì Use the best algorithm available

ì Many examples where this hasn’t happened
ì Microsoft LANMAN password hashing algorithm

ì Crackable in seconds
ì Proprietary algorithm, instead of MD5 which was

available at the same time (which at least took
hours/days to crack)

ì DVD CSS
ì Proprietary algorithm w/40 bit keys (short!)
ì Easily crackable

Fall 2018Secure Software Systems

16

http://www.sane.nl/events/sane2000/papers/burnett.pdf

http://www.sane.nl/events/sane2000/papers/burnett.pdf

Focusing OnlyOn the Crypto

ì Don’t focus only on the Cryptography!

ì House analogy
ì Front door lock with 4 pins, 10 positions

ì 104 combinations for burglar to try
ì Front door lock with 10 pins,

10 positions
ì 1010 combinations for burglar

ì So we’re secure now, right?

Fall 2018Secure Software Systems

17

Focusing OnlyOn the Crypto

Fall 2018Secure Software Systems

18

Cleanup

ì Don’t Leave Private Data Around After Use!

ì Examples
ì Did you delete plaintext data after encryption?
ì Are there temporary files with plaintext data on

disk? (What about swap memory?)
ì Does your GUI save the password text from the

prompt dialog in memory somewhere?
ì Are you sure the library cleaned up afterwards?

Fall 2018Secure Software Systems

19

