
ì
Beyond Passwords

Fall 2018Secure Software Systems

1

Fall 2018Secure Software Systems

2

Beyond Passwords

ì Users hate passwords !

ì Security professionals hate passwords !

ì Everybody hates passwords !

ì Criteria to do better than passwords
ì Security
ì Usability
ì Deployability

Fall 2018Secure Software Systems

3

Beyond Passwords

Security
ì Physical observation

ì Targeted impersonation

ì Online or offline guessing

ì Leaks

ì Phishing

ì Theft

ì Trusted third party

ì Privacy

Usability
ì Memoryless

ì Scalable for users

ì Nothing to carry

ì Physically effortless

ì Easy to learn

ì Efficient

ì Infrequent errors

ì Easy recovery from loss

Fall 2018Secure Software Systems

4

Beyond Passwords

Deployability
ì Accessible

ì Low Cost

ì Server compatible

ì Browser (client) compatible

ì Mature

ì Non-proprietary

Fall 2018Secure Software Systems

5

Phew – long list!

Beyond Passwords

ì Password managers

ì Proxies

ì Federated identity
management

ì Graphical

ì Cognitive

ì Paper tokens

ì Visual cryptography

ì Hardware tokens

ì Phone-based

ì Biometric

Fall 2018Secure Software Systems

6

Fall 2018Secure Software Systems

7

ì
Tokens

Fall 2018Secure Software Systems

8

Authentication Tokens

Fall 2018Secure Software Systems

9

Authenticate a human based on
possession of a small machine

Enrollment

ì At enrollment, human is issued a token
ì Ranges from dumb (a physical key, a piece of paper)

to a smart machine (a cryptographic processor)
ì Token becomes attribute of human's identity

ì Easy to carry, maintenance-free, low cost
ì Only a subset of goals previously discussed!

Fall 2018Secure Software Systems

10

Example: Garage Door Opener

ì Activated by user (button press),
provides entry past barrier (gate, door)

ì One-pass protocol – only one message sent

ì Token stores serial number T

ì Barrier stores all serial numbers for all authorized
tokens

ì To enter: Token->Barrier: T

Fall 2018Secure Software Systems

11

Example: Garage Door Opener

ì Attack 1 – Replay attack
ì Thief waits nearby, captures serial number with

antenna, programs new token with same number,
gains entry

ì Attack 2 – Brute force
ì Thief programs device to try all serial numbers (e.g.

16 bit numbers) and waits a little while to gain entry

ì Countermeasure? Nonce

Fall 2018Secure Software Systems

12

Example: Garage Door Opener

ì Barrier has a (secret) master key – mk

ì Token stores
ì Serial number T
ì Nonce N (sequence counter)
ì Shared key k which is H(mk, T)

ì Barrier stores
ì Same values as token for all authorized tokens
ì Master key mk

ì To enter: Token→Barrier: T, MAC(T, N; k)
ì Token increments N
ì Barrier increments N if MAC tag verifies

Fall 2018Secure Software Systems

13

Example: Garage Door Opener

ì Problem: Desynchronization of nonce

ì Partial Solution: “Rolling window” of nonces

Fall 2018Secure Software Systems

14

Remote Authentication

Fall 2018Secure Software Systems

15

!
Human
Hu "

Local
System

L

#
Remote
System S$

Token T

%
%

Example: SecurID

ì Token displays code that changes
every 60 seconds
ì LCD display
ì Internal clock
ì No human input
ì Can compute hashes and MACs
ì Stores secret (factory encoded random key)

ì “nonce” is now current time (still a number used once)

ì Uses local device (L) to input PIN

Fall 2018Secure Software Systems

16

Example: SecurID

Assume

ì Remote system S stores

tuples (id_T, id_Hu, kT, pin)

ì Local system L

ì Human Hu stores PIN

ì Token T stores id_T, kT

1. Hu→L: I want to authenticate as id_Hu to S

2. L and S: Establish secure channel (against Eve)

3. L→Hu: Enter pin and code on keyboard

4. T→Hu: code = MAC(time@T, id_T, kT)

5. Hu→L: pin, code

6. L: compute h=H(pin, code)

7. L→S: id_Hu, h

8. S: lookup (pin, id_T, kT) for id_Hu;

1. id_Hu is authenticated if

h=H(pin, MAC(time@S, id_T; ktT))

Fall 2018Secure Software Systems

17

Example: SecurID

ì Engineering challenge
ì Clock synchronization between T and S
ì S tracks clock skew on per-token basis

ì Security challenge
ì Theft of kT from S for all tokens

ì 2011 data breach of RSA
ì Suspect that secure token seeds may have been stolen
ì RSA offered replacement tokens to 30,000 companies

that used them

Fall 2018Secure Software Systems

18

One-Time Password

Fall 2018Secure Software Systems

19

...
50: MEND VOTE MALE HIRE BEAU LAY
49: PUG LYRA CANT JUDY BOAR AVON
48: LOAM OILY FISH CHAD BRIG NOV
47: RUE CLOG LEAK FRAU CURD SAM
46: COY LUG DORA NECK OILY HEAL
45: SUN GENE LOU HARD ELY HOG
44: GET CANE SOY NOR MATE DUEL
43: LUST TOUT NOV HAN BACH FADE
42: HOLM GIN MOLL JAY EARN BUFF
41: KEEN ABUT GALA ASIA DAM SINK
...

One-Time Password

ì One-Time Password is only valid once (first use)
ì Similar to changing your password each time
ì Prevents replay attacks
ì Man-in-the-middle attacks still possible

ì Use case: Login at untrusted public machine where
keylogging is possible

ì Use case: Account recovery if main password or
two-factor device (e.g. phone) is lost
ì Google backup codes

Fall 2018Secure Software Systems

20

One-Time Password

ì Naïve-implementation
ì Pre-registered one-time passwords distributed on

paper (hassle to obtain, risk of running out of
passwords)

ì Real implementation
ì Algorithmic generation of one-time passwords
ì SecurID is an example – each code is a password

valid for only 60 seconds
ì Generation method: Iterated hashing

ì Lamport’s Scheme, S/KEY password system

Fall 2018Secure Software Systems

21

ì
Certificates

Fall 2018Secure Software Systems

22

Digital Certificate

ì Digital certificate binds together
ì Identity of principal
ì Public key of principal (encryption or verification key)

ì Cert(S; I): Certificate issued by principal I for principal S
ì Issuer I certifies that K_S belongs to Subject id_S
ì b = id_S, K_S (id of subject, key of subject)
ì Cert(S; I) = b, Sign(b; k_I)

ì Fingerprint: H(Cert(S; I))

Fall 2018Secure Software Systems

23

Digital Certificate Authentication

Fall 2018Secure Software Systems

24

!
Subject

S "
Authenticator

A#
Certificate

Issuer
I

Digital Certificate Authentication

1. S: Let msg = “I’m id_S”.

Compute s = Sign(msg; k_S)

2. S →A: msg, s

3. A: Find Cert(S; I)

1. Verify I’s signature on cert

2. Verify id_S

3. Retrieve K_S

4. Accept if Ver(msg; s; K_S).

ì Notes

ì I must be trusted to issue

certificate

ì A must verify id_S – don’t

omit!

Fall 2018Secure Software Systems

25

X.509 Certificates

Overview
ì Standard format for

certificates
ì RFC 5280

ì Used for
ì SSL/TLS
ì S/MIME (email)
ì EAP-TLS (Wi-Fi)

Contents
ì Serial number

ì Issuer distinguished name

ì Validity period
(start and end time)

ì Subject distinguished name

ì Subject public key (and name of
algorithm)

ì Issuer’s signature for all above
data (and name of algorithm)

Fall 2018Secure Software Systems

26

X.500 Distinguished Names

ì General purpose directory

ì Common options for X.509 certificates
ì Common Name (CN): Human full name, server

name, or domain name
ì Organization unit (OU): Finance, HR, …
ì Organization (O): Pacific, Google, …

Fall 2018Secure Software Systems

27

Certificate Chain

ì Problem
ì Receive a message signed by A, but don’t know A’s

public verification key
ì Find a certificate Cert(A; B)

ì Certificate for A signed by B
ì But don’t know B’s public key either!

Fall 2018Secure Software Systems

28

Certificate Chain

ì Solution: Recursion J
ì Set of certificates
ì Cert(A; B), then Cert(B; C); then Cert(C; D), and hopefully

you know D’s public key

ì Certificate chain – sequence of certificates that certify
each other
ì One end: Certificate for principal you want to

authenticate
ì Other end: Certificate for principal you already know

ì Root or anchor of trust
ì Must trust every issuer in the chain to issue certificates

Fall 2018Secure Software Systems

29

Public-Key Infrastructure

ì System for managing distribution of certificates

ì Two models
ì Decentralized – peer to peer, no leader

ì PGP
ì Centralized – oligarchy, leadership by elite

ì CA

Fall 2018Secure Software Systems

30

ì
PKI Decentralized: PGP

Fall 2018Secure Software Systems

31

PKI Example: PGP

ì “Pretty Good Privacy”
ì Encryption tool for emails and files
ì Dates back to early days of crypto (1991)
ì Developed by Phil Zimmermann

ì Investigated by US Government for “Munitions export
without a license”

Fall 2018Secure Software Systems

32

PKI Example: PGP

ì Each user manages a keyring

ì Alice has her key in her keyring

ì Alice meets Bob at key-signing party
ì She copies his key into her keyring
ì She marks Bob as fully or marginally trusted as an

introducer
ì She copies other keys he might have collected, too

ì Other option: Downloading keys from a key server (but
you have little proof of who they actually belong to)

Fall 2018Secure Software Systems

33

PKI Example: PGP

Fall 2018Secure Software Systems

34

https://xkcd.com/364/

Never bring tequila to a key-signing party….

https://xkcd.com/364/

PKI Example: PGP

ì Entries on the keyring are certificates

ì Alice’s own key on her keyring
ì Cert(A; A) <- Self-signed certificate!

ì When Alice imports a key signed by Bob, she gets
Cert(C; B)
ì She can import as-is and put Cert(C; B) into keyring
ì She can vouch for it and put Cert(C; A) into keyring

ì Can phone Bob and manually verify a certificate
taken from a key server

Fall 2018Secure Software Systems

35

PKI Example: PGP

ì Keys on keyring are fully valid only if
ì Signed by 1 fully trusted introducer or 3 marginally

trusted introducers
ì The certificate chain leading from key to user’s own

key has length of 5 or less

ì Valid keys can be used for encryption and signing

Fall 2018Secure Software Systems

36

PKI Example: PGP

Fall 2018Secure Software Systems

37

“As time goes on, you will accumulate keys from other people that
you may want to designate as trusted introducers. Everyone else
will each choose their own trusted introducers. And everyone will
gradually accumulate and distribute with their key a collection of
certifying signatures from other people, with the expectation that
anyone receiving it will trust at least one or two of the signatures.
This will cause the emergence of a decentralized fault-tolerant
web of confidence for all public keys.”

Phil Zimmermann, 1992

ì
PKI Centralized: CAs

Fall 2018Secure Software Systems

38

PKI Example: CAs

ì Certificate Authority (CA)
ì Principal whose purpose is to issue certificates

ì Centralized PKI philosophy

Fall 2018Secure Software Systems

39

PKI Example: CAs

ì Everyone enrolls with CA to get certificate
ì Example: Alice enrolls and get Cert(Alice; CA)

ì Bob’s system comes pre-installed with CA’s self-
signed certificate Cert(CA; CA)

ì When Bob receives message signed by Alice
ì Bob contacts CA to get Cert(Alice; CA)
ì Or Alice includes that certificate with her message

Fall 2018Secure Software Systems

40

PKI Example: CAs

ì Web server has Cert(server; CA) installed
ì Server identity is hostname
ì CA is a root for which Cert(CA; CA) is installed in

browser

ì Browser authenticates web server using hostname
and public key from certificate

Fall 2018Secure Software Systems

41

Many Certificate Authorities

ì Many many Certificate Authorities
ì No single CA will be trusted by all world

governments, militaries, businesses, …

ì OS and web browsers come with some CAs pre-
installed

ì Organizations act as their own CAs
ì Company issues certificates to employees for VPN
ì Central bank issues certificates to other banks
ì Manufacturer issues certificates to sensing devices

Fall 2018Secure Software Systems

42

Enrollment with CA

ì You create a key pair – the CA never knows your
private key

ì You generate a certificate signing request (CSR)
containing the identity you are claiming

ì You send the CSR to a CA (w/payment?)

ì CA verifies your identity (how well?)

ì CA signs your public key, creating a certificate, and
sends certificate to you

Fall 2018Secure Software Systems

43

Identity Verification

ì Extended Validation (EV) certificate
ì CA does extra checking of your identity
ì Certificate marked as having received EV
ì Web browser displays EV mark in GUI

ì Extra checking (in exchange for more $$$)
ì Verify legal existence of organization
ì Verify physical presence of organization
ì Verify ownership/control over domain

ì CA records that data in certificate as part of subject
identity

Fall 2018Secure Software Systems

44

Fall 2018Secure Software Systems

45
Extended Validation Certificate

Fall 2018Secure Software Systems

46
Domain Validated Certificate

Issuing Certificates

ì Conflicting goals

ì CA private signing key must be kept secret
ì Public verification key is pre-installed on user

systems and hard to update
ì A leaked private signing key could forge certificates
ì Solution: Keep private key offline in “cold storage”

ì CA private signing key must be available for use
ì Needed to sign new certificates for customers
ì Solution: Keep it in computer memory

Fall 2018Secure Software Systems

47

Issuing Certificates

ì Solution? Use root and intermediate CAs

ì Root CA
ì Certificate at root of trust in chain
ì Public key pre-installed at client PCs
ì Private key kept offline / highly secure

ì Intermediate CAs
ì Certified by root CA
ì Used to certify user keys
ì Might by run by different organization than root CA

Fall 2018Secure Software Systems

48

ì
PKI Problems

Fall 2018Secure Software Systems

49

Problem 1: Revocation

ì Key gets compromised (subject or issuer)
ì Your website gets hacked and private key stolen

ì Subject leaves an organization (and certificates
need to be revoked)

ì Several (mediocre) options
ì Fast expiration
ì Certificate revocation list (CRL)
ì Online certificate validation

Fall 2018Secure Software Systems

50

Problem 1: Revocation

ì Fast expiration

ì Idea
ì Validity interval is short (10 mins to 24 hours)
ì Any compromise is for a bounded time period

ì Problems
ì CAs have to issue new certificates frequently

(do they need to re-check identity?)
ì Machines have to update certificates frequently

ì Would need to automate

Fall 2018Secure Software Systems

51

Problem 1: Revocation

ì Certificate Revocation List (CRL)

ì Idea
ì CA posts lists of revoked certificates
ì Clients download and check list every time they need to validate

certificate

ì Problems
ì Clients don’t bother checking (usability problems)

ì Large list, download time
ì Or clients cache (TOCTOU attack)
ì CRL must always be available (DDOS attack?)

ì Chromium example – limit of 250kB
ì https://dev.chromium.org/Home/chromium-security/crlsets

Fall 2018Secure Software Systems

52

https://dev.chromium.org/Home/chromium-security/crlsets

Problem 1: Revocation

ì Online Certificate Validation

ì Idea
ì CA runs validation server
ì Client contacts server each time to validate certificate

ì Problems
ì Clients don’t bother

ì Checking adds latency to each new session
ì Server must always be available (DDOS?)

ì Clients “soft fail” to mitigate risk and users don’t notice
ì Reveals to CA which websites you want to access - privacy

Fall 2018Secure Software Systems

53

Problem 1: Revocation

Fall 2018Secure Software Systems

54

ì Online Certificate Status Protocol (OCSP)
ì Support: IE, Firefox, Safari, but not Chrome

!
(alice)

"
(bob)

#
(carol)

CA
Here is my
public certificate
(signed by Carol)

I don’t trust Alice.
Can you confirm
this cert?
(OCSP request)

Cert is still valid
(OCSP reply)

Note: Alice and Bob both trust Carole as CA. (Have Carole’s root cert preinstalled)

Problem 1: Revocation

ì OCSP Stapling (aka TLS Certificate Status Request)

ì Idea
ì Certificate must be accompanied by “fresh” attestation from CA that

certificate is valid (window of a few days)
ì Whoever presents certificate to client is also responsible for acquiring the

fresh assertation and stapling it to the certificate

ì Bypasses most problems with online validation
ì No privacy concern – the CA only knows their customer (website), not the

client (visitor)
ì Performance better – Certificate holder requests verification once (per time

interval) – no need for each client to verify!
ì Clients don’t incur latency of verification request

ì Support: Firefox, IE, Chrome

Fall 2018Secure So@ware Systems

55

Problem 1: Revocation

ì https://blog.hboeck.de/archives/886-The-Problem-
with-OCSP-Stapling-and-Must-Staple-and-why-
Certificate-Revocation-is-still-broken.html
ì Still not perfect! (as of early 2017)
ì Implementation issues with Apache and Nginx make

it risky to enable OCSP Stapling without risking your
clients receiving errors in the case of temporary
failure of OCSP verification server

ì Doesn’t work with intermediate CA certs (can only
staple one OCSP response at a time)

Fall 2018Secure Software Systems

56

https://blog.hboeck.de/archives/886-The-Problem-with-OCSP-Stapling-and-Must-Staple-and-why-Certificate-Revocation-is-still-broken.html

Problem 2: Authority

ì CA goes rogue or gets hacked
ì Already discussed in cryptography discussion

ì Mediocre solu3ons
ì HTTP Public Key Pinning (HPKP)

ì Upon first connec3on to server, client leans of public keys. In future
connec3ons, cer3ficate must contain one of those keys

ì Deprecated by Chrome – too risky to deploy!

ì Cer3ficate transparency
ì Maintain public log of issued cer3ficates and monitor log to detect malicious

ac3vity

ì DNS Cer3ficate Authority Authoriza3on (CAA)
ì DNS record for en3ty specifies list of allowed CAs

ì For the CA, not for the client! Legi3mate CA won’t issue cert unless in DNS list

ì DNS-based Authen3ca3on of Named En33es (DANE)
ì Bypasses CAs en3rely and relies on DNS to bind cer3ficates to host names

Fall 2018Secure Software Systems

57

L

