Software Reverse Engineering

COMP 293A | Spring 2022 | University of the Pacific | Jeff Shafer

Xx86 and x64
Assembly Code

Malware

Cryptocurrency Mining

Not exactly “malware”, but unwelcome

Generic scenario

1. Websites commonly pull in JavaScript from third parties
(e.g. ad networks, fonts, menu APIs, ...)

2. Third-party scripting site is hacked and malware is
introduced

3. Result: Many websites are now distributing malware to
their users that weren’t directly hacked themselves

JavaScript is running in 100% unbreakable sandbox (we
hope...) but can still cause mischief on user’s PC

Cryptocurrency Mining

BrowseAloud web screen reader service
2 https://www.texthelp.com

€3 browsealoud’

for Websites

BrowseAloud (ba . js) JavaScript altered to include
invocation of Monero cryptocurrency miner

72 https://coinhive.com/

https://www.texthelp.com/
https://coinhive.com/

Cryptocurrency Mining

4000-5000 websites affected
2 cuny.edu, uscourts,gov, ...

72 Many .gov sites (US and international) due to
accessibility requirements

Monero miner is mostly harmless — just spikes your
CPU to 100% if your ad blocker didn’t kill it outright

Could have easily been used for ad popups,
password stealing, or fake updates to install
malware

Prevention

Before:

<script src="//www.browsealoud.com/plus/scripts/ba.js"
type="text/javascript"></script>

After (Using Subresource Integrity Attribute)

<script src="//www.browsealoud.com/plus/scripts/ba.js"
integrity="sha256-
Abhisa/nS9WMne/YX+dgiFIN1+JiE15MCWVvASIvVLtIk=""
crossorigin="anonymous"></script>

Challenge — What if third-party changes their script?

7

Cryptocurrency Mining

https://scotthelme.co.uk/protect-site-from-

cryptojacking-csp-sri/

https://scotthelme.co.uk/protect-site-from-cryptojacking-csp-sri/

7
x86 Assembly

Roadmap

Disassemblers

Software Reverse Engineering Spring 2022

Instruction Set Architecture

Instruction Set Architecture (ISA) is the interface
between hardware and software

? Specifies the format of processor instructions

? Specifies the format of memory addresses
(and addressing modes)

? Specifies the primitive operations the processor can
perform

ISA is the “contract” between the hardware
designer and the assembly-level programmer

2 Documented in a manual

Learning Objective

71 Full kno

Software Reverse Engineering Spring 2022

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

(Real) Learning Objectives

Recognize assembly code structures as produced by
a compiler

Trace through a subroutine or small collection of
subroutines and decipher code operations and
high-level objective of code

Writing assembly programs from scratch is NOT a
learning objective

? Butinline assembly of a function or two might be
valuable

History

The x86 lineage traces back to an 8-bit architecture
8080 — 8 bits

8086, 8088 — 16 bits

80286 — 16 bits

80386 — 32 bits

80486 — 32 bits

N N N N N

e

Many questions of “why is the design like this?” can
be answered with “backwards compatibility”

Instructions

Data manipulation
2 ADD, SUB, SHR, AND, OR, XOR, ...

Data transfer
A PUSH, POP, MOV, XCHG, LEA, ...

Branching and conditionals
2 JMP, CALL, RET, CMP, ...

Instructions

Instruction format
? Op-code (think “operation”): e.g. ADD
#” Operand (think “data”): e.g. 2+10

Instructions can have 0, 1, or 2 operands
2 Immediate value
2 Register

2 Memory location

Software Reverse Engineering

Data Sources

Registers

7 Onthe CPU itself

? Very close to ALU

2 Tiny

? Accesstime: 1 cycle
Memory

2 Off-chip

2 large

?” Access time: 100+ cycles

Spring 2022

Examples

Add 10 to a register

add eax, 10

Add 10 to some location in memory

add BYTE PTR [var], 10

Software Reverse Engineering

18

Spring 2022

Registers

Original general purpose registers in 16-bit Intel
architecture

Accumulator Register (ax)
Base Register (bx)

—

Counter Register (cx) — A B CD

Data Register (dx)
Stack Pointer Register (sp)
Stack Base Pointer Register (bp)

Source Index Register (si)

NN NNNNNN
\

Destination Index Register (di)

Register Naming Convention

Example for “A” Register

This is one physical register, but the name varies depending on the bits accessed

;I» R = 64-bit register

— E = Extended register

64-bit

| Original
architecture

H = High byte
L = Low byte

(Typical) Register Uses

Accumulator Register (ax)
7 Addition, Multiplication, Return Values

Base Register (bx)

“STANDARDS*
Counter Register (cx) ‘

2 Counter ' \ \ 1 '&"3
O -
4

{ "
Data Register (dx)

Stack Pointer Register (sp)
7 The stack!

Stack Base Pointer Register (bp)

7 Function arguments and local variables

Source Index Register (si) / Destination Index Register (di)
7 Memory transfer instructions

Special Purpose Registers

eip
? Instruction Pointer
2 Points to next instruction to execute

eflags

2 Stores outcome of calculation
?2 Controls CPU operation

Segment Registers

? cs—Code Segment
7/ ds —Data Segment
? ss —Stack Segment

Operands (recap)

Instruction operands can be

72 Immediate value

“Add 10 to the value in eax”
2 Register

“Add the value in ebx to the value in eax”
2 Memory location

“Go to memory somewhere and retrieve a value. Add
it to the value in eax”

Memory Addressing

How to we determine what memory address to access?
(a.k.a. determine the effective address)

Direct mode (address is in instruction)
A mov edx, [0x01020304]

Register indirect mode (address is in register)
A mov edx, [eax]

Base + Displacement
A mov edx, [ebp + 0x10]

A mov edx, [eax + ebx * 8]
Useful for arrays! Base + Offset*Size

Functions

General rules

Functions must preserve all registers
72 Except for eax, ecx, and edx

A Except for esp (updated according to calling
convention)

Return value of function is saved in
eax (32 bits) or edx:eax (64 bits)

Calling Conventions

How do | pass data into functions?
How is data returned from functions?

Answer will vary depending on compiler

HOW STANDARDS PROLIFERATE:
(65 A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

I4?! RiDICULOLS! SOON: '
WE NEED To DEVELORP Calllng
g ONE UNIVERSAL STAN .
eV | sl ISVl Conventions
THERE ARE || USE OPSES. iy THERE ARE
4 COMPETING \ ® e 5 COMPETING
STANDPRDS. STANDPRDS.

NOT FOLLOWING THE CORRECT NAMING
M

Calling Conventions

cdecl

72 Most common convention

? Function arguments passed on the stack
(pushed right to left)

2 Calleer cleans the stack after use

___stdcall

72 Convention used in Win32 API
(which means you will see both conventions in malware!)

? Function arguments passed on the stack
(pushed right to left)

2 Callee cleans the stack

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x86-architecture

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x86-architecture

Calling Conventions

thiscall
2 Usedin C++ code

72 Function arguments passed on the stack
(pushed right to left)

72 Microsoft compilers
“this” pointer passed in ecx register
Callee cleans the stack

72 GNU compilers
“this” pointer pushed onto stack last
Caller cleans the stack

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x86-architecture

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x86-architecture

Calling Conventions

fastcall
Accelerated!

First two arguments are passed in ecx and edx

888'

Remaining arguments are passed on the stack
(pushed right to left)

Callee cleans the stack

N

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x86-architecture

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x86-architecture

Stack

The stack grows DOWN (from high mem to low
mem)

A Positive offset from base pointer ebp =
Function argument

7 Negative offset from base pointer ebp =
Local variable of function

Example of how the stack works

2 http://www.csr-group.com/resources/Stack-
graphical-handout.pdf

http://www.csr-group.com/resources/Stack-graphical-handout.pdf

Pleaze Sir... g

o e
- 'bv
-
~ YOIN
A

X64 Assembly

Software Reverse Engineering Spring 2022

More Memory!

x64 ISA is a 64-bit architecture with legacy 32-bit
mode that is backwards compatible with x86

Key change — memory addresses are now 64 bits
wide
A 232 =~4GB of addressable memory

A 2% =~ 16 exabytes of addressable memory

Implicit in this is that all registers are now 64 bits
wide

rdx
rsi
rdi
rbp

rsp

Software Reverse Engineering

edx
esi

edi

esp

dx
si

di

Sp

More

Registers!

32-bit Registers

Wider 64-bit Registers

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture | Spring 2022

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture

x64 Calling Convention

Only one calling convention! (Yay simplicity)

Arguments
72 Integers: rcx, rdx, r8, r9
? Floating-point: xmmO-xmm3 (SSE registers)

72 Additional arguments passed on stack

Return value
72 Integer: rax

72 Floating-point: xmmO

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture

Upcoming Events

Tuesday March 10t
72 Project 1 Proposal Due

