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Stuxnet —To Kill a Centrifuge

Y. ... and protected by a military
who didn’t like you very much
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... and you wanted the
facility to suffer an
unfortunate accident




Stuxnet —To Kill a Centrifuge

... without using
methods (e.g. airstrikes)
that would allow blame
for the “accident” to be

placed on you
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Stuxnet —To Kill a Centrifuge

How to we get our malware to an isolated,
network air-gapped facility in the middle of the
Iranian desert?

People come and go from the facility regularly
(e.g. contractors, employees)

Use spies or other malware to infect USB keys that
contractors regularly carry into the facility and
connect to computers inside



Stuxnet —To Kill a Centrifuge

What if the contractors don’t have access to all the computers?

Malware contains a worm that will allow it to spread inside the
air-gapped network

How can we help ensure malware will spread to all computers
inside?

Cash in four zero-day vulnerabilities that three-letter-agencies
were hoarding for a special project

?  Spread from USB: PNK/PIF vulnerability (viewing the icon in
Windows Explorer executes the malicious code!)

72 Spread over network: Remote code execution on PC with printer
sharing enabled

72  Two privilege escalation vulnerabilities



Stuxnet —To Kill a Centrifuge

How do we ensure that our malware isn’t detected?

Malware is signed by keys stolen (via spies!) from
Jmicron and Realtek in Taiwan

# Driver signing allows kernel-mode rootkit to be installed

Safeguards
72 Malware will erase itself after specific date

72 Malware will only spread to a few other targets (worm is
not aggressive)

72 Malware will become inert if PC isn’t intended target



Stuxnet —To Kill a Centrifuge

Besides spreading, what do we want the malware
to do?

Sabotage uranium enrichment centrifuges

But make it look like innocent technical
malfunctions, poor design, shoddy construction,
poor quality materials due to embargo, anything
other than evil hackers!

These are high performance devices that require
exacting computer controls to function properly
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Siemens PCS 7 Distributed Control System
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| Siemens WiInCC Monitoring and Control |

e System — Runs on Windows!
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Siemens Step7 Controller Programmer — Runs on Windows!
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Stuxnet —To Kill a Centrifuge

to do?

Let’s speed up and slow down the centrifuge in

Besides spreading, what do we want the malware

dangerous ways, and lie to the monitoring system

Normal Operation:

Step 7

request
code block
from PLC

show code
block from
PLC to user

_______

s7otbxdx.dll

PLC
s7blk_read = | pmmmm-a
1
"""" . STL
i STL ' code :
code < i block 1
block '

- - -

Malicious Operation (“Hooked"”):

Step 7

request

stuxnet
s7othxdx.dll

original
hut renamed
s7othxsx.dll

code block
fTOM PLC i

show code
block from
PLC 10 USEl qummm

-------

+ modified

s7blk_read

_______

PLC
s7hlk_read T .
"""" >, s
+ STL : ' code :
' €008 | <gum—e] ; block
s hlOCk ) ' '

- - - -

I
ST
1 code :
block

-—— - - -

Control software completely
isolated from physical hardware by

malware hooks
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Stuxnet —To Kill a Centrifuge

Required very detailed (inside) knowledge of centrifuge
design and construction

72 Centrifuges were 1960’s-70’s Pakistani designs

Required very detailed (inside) knowledge of control
system monitoring centrifuges

Malware was tailored for a very specific set of control
systems and devices

? Only attack Siemens S7-300 PLCs controlling variable-
frequency drives from two vendors (Vacon and Fararo
Paya), spinning between 807Hz and 1210Hz

72 Most locations in the world? Malware does nothing at all



Stuxnet —To Kill a Centrifuge

“To Kill a Centrifuge”

72 https://www.langner.com/wp-
content/uploads/2017/03/to-kill-a-centrifuge.pdf

Attack #1 — Induce minor malfunctions (overpressure)
intended to degrade plant operations, delay nuclear
production and remain undetected

Attack #2 — Induce major malfunctions even at the risk

of being detected

2 "History’s first field experiment in cyber-physical weapon
technology”


https://www.langner.com/wp-content/uploads/2017/03/to-kill-a-centrifuge.pdf

—_——
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Life as a Malware Analyst

1 R X}
The malware authors are actively trying to subvert you
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And they really
don’t like you
analyzing their
code either...




Constant game of cat and mouse
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Packers
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Recap — Packers

Method to hide malicious
program from detection

72 Might compress original
malware

72 Might encrypt original
malware (“crypter”)

72  Might byte-fiddle (XOR, ...)
original malware




Recap — Packers

Here’s an executable — Is it packed?

Signs
? Few readable strings
2  Few importsin IAT

72 High entropy in program section
(i.e. program sections are “too random”)

Normal code entropy: 5-6 bits per byte
Packed code entropy: >7 bits per byte
2  You get lucky / malware author is inexperienced

Program sections or embedded strings contain name of
packer



Recap — Packers

You only see the decompression routine

72 Real malware is a compressed/encrypted blob

Goal: See the extracted blob without wasting time
understanding intricate details of the unpacker

Challenge: Each unpacker is different!
? Different techniques to conceal code

? Different techniques to resist debuggers



Methods to Deal With Packed Malware

Method 1 — Direct Memory Dump
Method 2 — Selective Debugging w/Memory Dump

Method 3 — Don’t Dump, Just Debug



Method 1 — Direct Memory Dump

Idea: Dump the malware executable from memory after
unpacking
2 No skill required! ©

Demo #1
? Disable ASLR via CFF Explorer (“DLL can move”)
Detonate malware
Attach to active malware with standalone Scylla
Fix IAT, Get Imports, and then Dump
Result will have both unpacking code + unpacked malware

N 3N

Problem: Can’t run the resulting dump. Original Entry Point
(OEP) still points to original unpacker code

2 Would have to wildly guess what correct location is



Method 2 — Selective Debugging

Idea: Run the malware in the debugger until it
unpacks and jumps to unpacked code, then dump
contents from memory

2 As practiced in Lab 8

Advantage: You can observe the Original Entry Point
(OEP) and fix the dumped executable

? Better chance of obtaining a runnable executable

A The better the dumped executable, the more useful
it will be in IDA



Method 2 — Selective Debugging

Demo #2

? Disable ASLR via CFF Explorer (“DLL can move”)

? Load malware into debugger (x64dbg)

? Locate end of unpacker and set breakpoint there
Finding this location requires skill/detective work

72 Run to breakpoint, allowing malware to unpack

? Carefully single-step to jump into unpacked code
This is the new OEP — You discovered it!
2 Dump unpacked process (via OllyDumpEx plugin)
? Fix IAT and OEP (via Scylla plugin, IAT Autosearch, Get

Imports)



Finding the End of the Unpacker (1)

Thought process for (potentially) helpful shortcut

Assumptions
A  The original binary has no idea it will be packed

A The packing utility has no idea about the specific binary that will be
packed

72 Thus, the unpacker logic, when it uses the stack, has to eventually
clean up the stack by the end of the unpacking stub before it jumps
to run the now-unpacked binary

Shortcut

72 Set a hardware breakpoint on the first element of the stack

?A  Sooner or letter (probably sooner), you will arrive at the end of the
unpacker right before a jump or call to the unpacked binary



Finding the End of the Unpacker (2)

A different thought process for (potentially) helpful shortcut

Assumptions
7 The unpacked binary must go somewhere — You need to find that location
7 Perhaps a PE section has a real-size of 0 bytes but a virtual-size of many bytes?
7 Perhaps the packed binary calls a single memory allocation function (VirtualAlloc)?
7 Perhaps there’s a huge block of 0’s in the file?
Shortcut
7 Set a hardware write breakpoint at the first and last address of your suspected region
7 Run until you hit those breakpoints
7 Look around in the debugger (via “View as Disassembly”)
Does it look like code got placed in that region? Is the region full now?
7 Cross your fingers and hope that the unpacker is “nearly finished” now
7 Do some aggressive single-stepping or loop skipping (via run until selection) until you see a jump

whose target address is inside your suspected region

This is the new OEP — You discovered it!



Method 3 — Don’t Dump, Just Debug

Idea: Malware unpacker may be too obfuscated to easily
find jump to unpacked code, or there may be inscrutable
problems fixing IAT

? Do you really need to dump the unpacked file to answer
your analysis questions about the malware?

2 Don’t bother trying to find the end of the unpacking
routine or the unpacked OEP

Use the debugger to examine the original packed
malware after it completes its unpacking work and the
malware is running

? Use behavioral analysis to generate questions
72 Use the debugger to selectively answer those questions



Method 3 — Don’t Dump, Just Debug

Demo #3
? Disable ASLR via CFF Explorer (“DLL can move”)
? Load into x64dbg

? Goal — We want to set a breakpoint on an API that the
malware uses (SetBPX FunctionName)

Option 1: Guess likely APl names based on behavioral analysis —
Perhaps you observe file I/O or network 1/0?

Option 2: Inspect program memory map for likely regions of
unpacked executable code (ignoring DLLs, less likely)

7 Run to that breakpoint!
Malware should be unpacked by this point

7 In this region you can inspect strings, intermodular calls,
etc...

Set hardware breakpoints and reset execution to run to them
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Code Injection

Malware doesn’t always have to operate from its
ownmalware.exe process

72 Malicious code can be injected into other user-space
processes and the original malware.exe exits

Advantage: Makes infection harder to spot, as there
are only “normal processes” running on the system

Code injection may be done by the unpacker



Code Injection — API Calls

Get list of processes on system
CreateToolhelp32Snapshot, EnumProcesses

Obtain handle to target process
OpenProcess

Allocate space in memory of target process

VirtualAllocEx

Write injected code into target process

WriteProcessMemory Many variations
exist using normal

Run the code Win32 API calls

CreateRemoteThread




Code Injection — API Calls

Malware might call undocumented native API (NtXXX or ZwXXX) directly,
bypassing the official Windows API functions

CreateToolhelp32Snapshot
-> NtQuerySystemInformation

OpenProcess
—-> NtOpenProcess

VirtualAllocEx
-> NtAllocateVirtualMemory

WriteProcessMemory
-> NtWriteProcessMemory

CreateRemoteThread
-> NtCreateThreadEx



—_——
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Debugger Detection

Demo #4 — Methods to defeat debugger detection
72 Manual register tampering

2 Manual code patching

? Cloaking device (ScyllaHide plugin)



