
ì
Software Reverse Engineering
COMP 272 | Spring 2022 | University of the Pacific | Jeff Shafer

Anti-RE 2

ì

Spring 2022So+ware Reverse Engineering

2

Malware

Stuxnet – To Kill a Centrifuge

Spring 2022Software Reverse Engineering

3

Imagine there was an
industrial facility
located deep out in the
desert…

Stuxnet – To Kill a Centrifuge

Spring 2022Software Reverse Engineering

4

… and it was full of gas centrifuges
for uranium enrichment

Stuxnet – To Kill a Centrifuge

Spring 2022Software Reverse Engineering

5

… and protected by a military
who didn’t like you very much

Stuxnet – To Kill a Centrifuge

Spring 2022Software Reverse Engineering

6

… and you wanted the
facility to suffer an
unfortunate accident

Stuxnet – To Kill a Centrifuge

Spring 2022Software Reverse Engineering

7

… without using
methods (e.g. airstrikes)
that would allow blame
for the “accident” to be
placed on you

Spring 2022Software Reverse Engineering

8Idea: Computer Virus

Stuxnet – To Kill a Centrifuge

ì How to we get our malware to an isolated,
network air-gapped facility in the middle of the
Iranian desert?

ì People come and go from the facility regularly
(e.g. contractors, employees)

ì Use spies or other malware to infect USB keys that
contractors regularly carry into the facility and
connect to computers inside

Spring 2022So+ware Reverse Engineering

9

Stuxnet – To Kill a Centrifuge

ì What if the contractors don’t have access to all the computers?

ì Malware contains a worm that will allow it to spread inside the
air-gapped network

ì How can we help ensure malware will spread to all computers
inside?

ì Cash in four zero-day vulnerabilities that three-letter-agencies
were hoarding for a special project
ì Spread from USB: PNK/PIF vulnerability (viewing the icon in

Windows Explorer executes the malicious code!)
ì Spread over network: Remote code execution on PC with printer

sharing enabled
ì Two privilege escalation vulnerabilities

Spring 2022So+ware Reverse Engineering

10

Stuxnet – To Kill a Centrifuge

ì How do we ensure that our malware isn’t detected?

ì Malware is signed by keys stolen (via spies!) from
Jmicron and Realtek in Taiwan
ì Driver signing allows kernel-mode rootkit to be installed

ì Safeguards
ì Malware will erase itself a6er specific date
ì Malware will only spread to a few other targets (worm is

not aggressive)
ì Malware will become inert if PC isn’t intended target

Spring 2022Software Reverse Engineering

11

Stuxnet – To Kill a Centrifuge

ì Besides spreading, what do we want the malware
to do?

ì Sabotage uranium enrichment centrifuges

ì But make it look like innocent technical
malfuncHons, poor design, shoddy construcHon,
poor quality materials due to embargo, anything
other than evil hackers!

ì These are high performance devices that require
exac3ng computer controls to funcHon properly

Spring 2022Software Reverse Engineering

12

Stuxnet – To Kill a Centrifuge

Spring 2022Software Reverse Engineering

13

Siemens PCS 7 Distributed Control System

Stuxnet – To Kill a Centrifuge

Spring 2022So+ware Reverse Engineering

14

Siemens WinCC Monitoring and Control
System – Runs on Windows!

Stuxnet – To Kill a Centrifuge

Spring 2022So+ware Reverse Engineering

15

Siemens Step7 Controller Programmer – Runs on Windows!

Stuxnet – To Kill a Centrifuge

ì Besides spreading, what do we want the malware
to do?

ì Let’s speed up and slow down the centrifuge in
dangerous ways, and lie to the monitoring system

Spring 2022Software Reverse Engineering

16

Normal Opera+on: Malicious Operation (“Hooked”):

Control software completely
isolated from physical hardware by
malware hooks

Spring 2022Software Reverse Engineering

17

Stuxnet – To Kill a Centrifuge

ì Required very detailed (inside) knowledge of centrifuge
design and construction
ì Centrifuges were 1960’s-70’s Pakistani designs

ì Required very detailed (inside) knowledge of control
system monitoring centrifuges

ì Malware was tailored for a very specific set of control
systems and devices
ì Only attack Siemens S7-300 PLCs controlling variable-

frequency drives from two vendors (Vacon and Fararo
Paya), spinning between 807Hz and 1210Hz

ì Most locations in the world? Malware does nothing at all

Spring 2022Software Reverse Engineering

18

Stuxnet – To Kill a Centrifuge

ì “To Kill a Centrifuge”
ì https://www.langner.com/wp-

content/uploads/2017/03/to-kill-a-centrifuge.pdf

ì Attack #1 – Induce minor malfunctions (overpressure)
intended to degrade plant operations, delay nuclear
production and remain undetected

ì Attack #2 – Induce major malfunctions even at the risk
of being detected
ì ”History’s first field experiment in cyber-physical weapon

technology”

Spring 2022Software Reverse Engineering

19

https://www.langner.com/wp-content/uploads/2017/03/to-kill-a-centrifuge.pdf

ì
Anti-RE

Spring 2022So+ware Reverse Engineering

20

Life as a Malware Analyst

ì At a minimum,
they want to
obfuscate their
malware to avoid
automated
detection

ì And they really
don’t like you
analyzing their
code either…

Spring 2022Software Reverse Engineering

21

ì The malware authors are actively trying to subvert you 😡

Spring 2022So+ware Reverse Engineering

22Constant game of cat and mouse

ì
Packers

Spring 2022So+ware Reverse Engineering

23

Recap – Packers

ì Method to hide malicious
program from detecMon
ì Might compress original

malware
ì Might encrypt original

malware (“crypter”)
ì Might byte-fiddle (XOR, …)

original malware

Spring 2022Software Reverse Engineering

24

Recap – Packers

ì Here’s an executable – Is it packed?

ì Signs
ì Few readable strings
ì Few imports in IAT
ì High entropy in program sec[on

(i.e. program sec[ons are “too random”)
ì Normal code entropy: 5-6 bits per byte
ì Packed code entropy: >7 bits per byte

ì You get lucky / malware author is inexperienced
ì Program secAons or embedded strings contain name of

packer

Spring 2022Software Reverse Engineering

25

Recap – Packers

ì You only see the decompression routine
ì Real malware is a compressed/encrypted blob

ì Goal: See the extracted blob without wasting time
understanding intricate details of the unpacker

ì Challenge: Each unpacker is different!
ì Different techniques to conceal code
ì Different techniques to resist debuggers

Spring 2022Software Reverse Engineering

26

Methods to Deal With Packed Malware

ì Method 1 – Direct Memory Dump

ì Method 2 – Selective Debugging w/Memory Dump

ì Method 3 – Don’t Dump, Just Debug

Spring 2022Software Reverse Engineering

27

Method 1 – Direct Memory Dump

ì Idea: Dump the malware executable from memory after
unpacking
ì No skill required! J

ì Demo #1
ì Disable ASLR via CFF Explorer (“DLL can move”)
ì Detonate malware
ì Attach to active malware with standalone Scylla
ì Fix IAT, Get Imports, and then Dump

ì Result will have both unpacking code + unpacked malware

ì Problem: Can’t run the resulting dump. Original Entry Point
(OEP) still points to original unpacker code
ì Would have to wildly guess what correct location is

Spring 2022Software Reverse Engineering

28

Method 2 – Selective Debugging

ì Idea: Run the malware in the debugger until it
unpacks and jumps to unpacked code, then dump
contents from memory
ì As practiced in Lab 8

ì Advantage: You can observe the Original Entry Point
(OEP) and fix the dumped executable
ì Better chance of obtaining a runnable executable
ì The better the dumped executable, the more useful

it will be in IDA

Spring 2022Software Reverse Engineering

29

Method 2 – Selective Debugging

ì Demo #2
ì Disable ASLR via CFF Explorer (“DLL can move”)
ì Load malware into debugger (x64dbg)
ì Locate end of unpacker and set breakpoint there

ì Finding this location requires skill/detective work
ì Run to breakpoint, allowing malware to unpack
ì Carefully single-step to jump into unpacked code

ì This is the new OEP – You discovered it!
ì Dump unpacked process (via OllyDumpEx plugin)
ì Fix IAT and OEP (via Scylla plugin, IAT Autosearch, Get

Imports)

Spring 2022So+ware Reverse Engineering

30

Finding the End of the Unpacker (1)

ì Thought process for (potentially) helpful shortcut

ì Assumptions
ì The original binary has no idea it will be packed
ì The packing utility has no idea about the specific binary that will be

packed
ì Thus, the unpacker logic, when it uses the stack, has to eventually

clean up the stack by the end of the unpacking stub before it jumps
to run the now-unpacked binary

ì Shortcut
ì Set a hardware breakpoint on the first element of the stack
ì Sooner or letter (probably sooner), you will arrive at the end of the

unpacker right before a jump or call to the unpacked binary

Spring 2022So+ware Reverse Engineering

31

Finding the End of the Unpacker (2)

ì A different thought process for (poten'ally) helpful shortcut

ì Assump4ons
ì The unpacked binary must go somewhere – You need to find that loca<on
ì Perhaps a PE sec<on has a real-size of 0 bytes but a virtual-size of many bytes?
ì Perhaps the packed binary calls a single memory alloca<on func<on (VirtualAlloc)?
ì Perhaps there’s a huge block of 0’s in the file?

ì Shortcut
ì Set a hardware write breakpoint at the first and last address of your suspected region
ì Run un<l you hit those breakpoints
ì Look around in the debugger (via “View as Disassembly”)

ì Does it look like code got placed in that region? Is the region full now?
ì Cross your fingers and hope that the unpacker is “nearly finished” now
ì Do some aggressive single-stepping or loop skipping (via run un<l selec<on) un<l you see a jump

whose target address is inside your suspected region
ì This is the new OEP – You discovered it!

Spring 2022Software Reverse Engineering

32

Method 3 – Don’t Dump, Just Debug

ì Idea: Malware unpacker may be too obfuscated to easily
find jump to unpacked code, or there may be inscrutable
problems fixing IAT
ì Do you really need to dump the unpacked file to answer

your analysis ques[ons about the malware?
ì Don’t bother trying to find the end of the unpacking

rou[ne or the unpacked OEP

ì Use the debugger to examine the original packed
malware aTer it completes its unpacking work and the
malware is running
ì Use behavioral analysis to generate ques%ons
ì Use the debugger to selec%vely answer those ques[ons

Spring 2022Software Reverse Engineering

33

Method 3 – Don’t Dump, Just Debug

ì Demo #3
ì Disable ASLR via CFF Explorer (“DLL can move”)
ì Load into x64dbg
ì Goal – We want to set a breakpoint on an API that the

malware uses (SetBPX FunctionName)
ì Option 1: Guess likely API names based on behavioral analysis –

Perhaps you observe file I/O or network I/O?
ì Option 2: Inspect program memory map for likely regions of

unpacked executable code (ignoring DLLs, less likely)
ì Run to that breakpoint!

ì Malware should be unpacked by this point
ì In this region you can inspect strings, intermodular calls,

etc…
ì Set hardware breakpoints and reset execution to run to them

Spring 2022Software Reverse Engineering

34

ì
Code Injection

Spring 2022Software Reverse Engineering

35

Code Injection

ì Malware doesn’t always have to operate from its
own malware.exe process
ì Malicious code can be injected into other user-space

processes and the original malware.exe exits

ì Advantage: Makes infection harder to spot, as there
are only “normal processes” running on the system

ì Code injection may be done by the unpacker

Spring 2022So+ware Reverse Engineering

36

Code Injection – API Calls

1. Get list of processes on system
CreateToolhelp32Snapshot, EnumProcesses

2. Obtain handle to target process
OpenProcess

3. Allocate space in memory of target process
VirtualAllocEx

4. Write injected code into target process
WriteProcessMemory

5. Run the code
CreateRemoteThread

Spring 2022Software Reverse Engineering

37

Many variations
exist using normal

Win32 API calls

Code Injection – API Calls

ì Malware might call undocumented native API (NtXXX or ZwXXX) directly,
bypassing the official Windows API functions

1. CreateToolhelp32Snapshot
-> NtQuerySystemInformation

2. OpenProcess
-> NtOpenProcess

3. VirtualAllocEx
-> NtAllocateVirtualMemory

4. WriteProcessMemory
-> NtWriteProcessMemory

5. CreateRemoteThread
-> NtCreateThreadEx

Spring 2022Software Reverse Engineering

38

ì
Anti-RE

Spring 2022So+ware Reverse Engineering

39

Debugger Detection

ì Demo #4 – Methods to defeat debugger detecHon
ì Manual register tampering
ì Manual code patching
ì Cloaking device (ScyllaHide plugin)

Spring 2022Software Reverse Engineering

40

