

Advanced Computer Networking

CYBR 230 – Jeff Shafer – University of the Pacific

IPv6

IP Versions

Version	Description
0-3	Unused: Development versions of IP
4	Current network-layer protocol
5	Unused: Experimental stream protocol – ST
6	New network-layer protocol (1996)
7-9	Unused: Experimental protocols – TP/IX, PIP, TUBA
10-15	Not allocated

Motivation for IPv6: Scarcity! (Of IP addresses...)

Why Replace IPv4?

- **7** The problem
 - IPv4 has ~4.3 billion addresses
 - World has ~6.6 billion people!
 - How many internet-capable devices per person?
- IP address exhaustion
 - Internet will not "collapse", but new devices / networks will not be able to join^(*)
- When? <u>NOW!</u> Final rate of consumption was one /8 block (16.78 million addresses) per month
 - Feb 1st, 2011 Five final /8 blocks handed out to Regional Internet Registries (RIRs)
 - **RIR** supply ran out within months

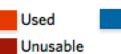
(*) Except via address translation...

Fall 2018

Blocks assigned – 1993											Allocated Unavailable Available				
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

Figure from http://arstechnica.com/articles/paedia/IPv6.ars

Blocks assigned – 2000											Allocated Unavailable Available				
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255


Figure from http://arstechnica.com/articles/paedia/IPv6.ars

Blocks assigned – 2007											Allocated Unavailable Available				
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

Figure from http://arstechnica.com/articles/paedia/IPv6.ars

7

IPv4 address space as of January 2010

Free

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

http://arstechnica.com/tech-policy/news/2010/01/90-of-ipv4-address-space-used-ipv6-move-looking-messy.ars

IPv4 address space as of October 18, 2010

Free

Unusable

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

IPv4 address space as of February 2011

Unusable

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
															1.00

http://arstechnica.com/tech-policy/news/2011/02/river-of-ipv4-addresses-officially-runs-dry.ars

Free

IPv4 Address Space

- Unavailable Addresses
 - 10.x Private Addresses
 - Along with 192.168.x and 172.16.x to 172.31.x
 - 127.x Local Loopback Addresses
 - **刀** Why an entire /8?
 - 224.x to 239.x Multicast groups
 - 240.x to 254.x Reserved for "future use"
 - Waste of address space
 - Impossible to re-use today because most IP software flags these addresses as invalid
 - 91 entities with entire class A's (Govt, IBM, GE, HP, MIT, ...)
- Current Allocation
 - http://www.iana.org/assignments/ipv4-address-space

Comparison – IPv4 vs IPv6

	IPv4	IPv6
Deployed	1981 [RFC 791]	1999 [RFC 2460 , 8200]
Address Size	32-bit number	128-bit number
Address Format	Dotted Decimal Notation: 192.149.252.76	Hexadecimal Notation: 3FFE:F200:0234:AB00: 0123:4567:8901:ABCD
Prefix Notation	192.149.0.0/24	3FFE:F200:0234::/48
Number of Addresses	2 ³² = ~4,294,967,296 (~4 billion)	2 ¹²⁸ = ~340,282,366, 920,938,463,463,374, 607,431,768,211,456

https://biotech.law.lsu.edu/blog/ipv4_ipv6.pdf (ARIN Fact Sheet)

Advanced Computer Networking

IPv6 Address Notation

- 128 bits 8 groups of 4 hex digits
 - 2001:0db8:85a3:08d3:1319:8a2e:0370: 7334
- "User friendly!" "Easy to remember!"
- "Helpful" Shortcuts:
 - Omit leading zeros in a group (0005:0db8:... is equivalent to 5:db8:...)
 - Collapse groups of all-zeros with :: (2001:0000:0000:0000:0000:8a2e:0370: 7334 is equivalent to 2001::8a2e:0370:7334)

But we couldn't just stop with a larger address space....

IPv4 vs IPv6 - Differences

IPv6 is *not* just IPv4 with 128-bit long addresses...

It's a different network protocol that should be configured (and secured) separately, but runs over the same physical wires. *"Dual Stack"*

IPv₄ vs IPv₆ - Similarities

- Datagram
 - Each packet is individually routed
 - Packets may be fragmented or duplicated
- Connectionless
 - No guarantee of delivery in sequence
- Unreliable
 - No guarantee of delivery
 - No guarantee of integrity of data
- Best effort
 - Only drop packets when necessary
 - **7** No time guarantee for delivery

IPv4 vs IPv6 – Address Length

Address Length

- IPv4 − 32 bits (2³² = ~4 billion)
- **7** IPv6 128 bits (2^{128} = ~340 trillion, trillion, trillion)
- ✓ Standard subnet size in IPv6: 2⁶⁴
 - Upper 64 bits: Subnet address
 - Lower 64 bits: Devices within subnet
- With such a large address space, no need to use all possible addresses

IPv4 vs IPv6 - Autoconfiguration

- How does a new host determine its IP address?
 - IPv4: DHCP (Dynamic Host Configuration Protocol)
 - IPv6: Stateless Address Autoconfiguration (SLAAC)
- Stateless IP address autoconfiguration via Neighbor Discovery (part of ICMPv6)
 - Host sends out multicast Router Solicitation
 - Router(s) reply with a Router Advertisement message
 - Includes router subnet and gateway information
 - Host constructs its own IP address(es)
 - Upper 64 bits From router(s), globally unique
 - Lower 64 bits Client generates based on MAC address (or picks randomly for SLAAC Privacy Extensions)
 - Host verifies uniqueness via Neighbor Solicitation
- DHCPv6 is <u>also</u> a thing! (Alternate method, helps with DNS)

IPv6 – Special Addresses

- ➤ Loopback: ::1
- Link Local
 - Scope limited to single network segment / link
 - Application: Network configuration, device discovery
 - Address matches fe80::/10
- オ Site local
 - Scope limited to single organization (similar to private IPv4 addresses)
 - Purpose: Each organization can randomly pick their own address instead of everyone using same range of private IPv4 addresses
 - Address matches fc00::/7
- Multicast
 - Address matches ff00::/8

IPv₄ vs IPv₆ – Fragmentation

IPv6 Fragmentation only done by transmitting host

- Supported by an optional header
 - Design assumption that fragmentation will be less common in the future
- Routers never fragment a packet
 - Drop packets that are too large
 - Send ICMP error back to host
 - Simplifies router design
- Host should use Path MTU Discovery (PMTUD) to select correct (maximum) packet size

IPv4 vs IPv6 – Router Overhead

- Simplified packet processing for routers
- Simplified Header Format
 - Infrequently used fields are moved to optional header extensions
- ↗ No Header Checksum in IPv6
 - Easier for routers No need to update checksum after decrementing TTL
 - Reliability maintained by link-level (Ethernet) and transport-layer (TCP, UDP) error checking

IPv4 Datagram

← 1 b	yte 🔶	← 1 byte	← 1	. byte	1 byte				
Version	HdrLen	Type of Service	Total Length						
Identifica	ition		Flags	Fragment Offset					
Time-To-	Live	Protocol	Header Checksum						
Source IP	Address		-						
Destinati	on IP Addr	ess							
Options a	and paddir	ng (optional)							
Payload									

IPv6 Datagram (Base Header)

← 1 b	1 byte		>	<pre>4 byte</pre>	1 byte				
Version	Traffic Class		Flow	Label					
Payload L	ength			Next Header	Hop Limit				
Source IP	Source IP Address (128 bits)								
Destinati	on IP Address (1	28 bits)							
Payload									

IPv6 Datagram (Base Header)

- Version (4 bits)
- **Traffic Class (8 bits)**
 - Differentiated Services (DS) field
 - Explicit Congestion Notification field
 - Can be used by routers to prioritize traffic or decide what to drop during congestion
- **Flow Label (20 bits)**
 - Identifies stream of packets
 - Can be used by routers to avoid sending a single flow across multiple outbound paths (which could result in reordering at arrival)

IPv6 Datagram with Options

Can append multiple headers

Base Header (Next=TCP)	TCP Data	
Base Header (Next=Fragment)	Fragment Header (Next=TCP)	TCP Data

Common additional headers

- **7** Fragmentation
- Routing (allows source to specify preferred route)
- Authentication Header (part of IPsec verifies source)
- Encapsulating Security Payload (part of IPsec carries encrypted payload)

IPv6-Routing

- How can having bigger IP addresses (128 bits) make routing easier?
 - Larger address space allows more intelligent network organization
 - Addresses match physical network organization
 - Collapse routing table entries
- Many competing proposals on the details...
- Basic constraint on all designs
 - Use upper 64 bits for routing
 - Use lower 64 bits for interface ID (clients pick this randomly or based on MAC address)

IPv6 – Routing

- Besides the address layout, how does IPv6 make routing easier?
 - No checksum calculation
 - No fragmentation
 - Infrequently used headers are optional

How does IPv6 make routing harder?

- **7** Forwarding table entries 2-4 times larger
- Need to route both IPv4 and IPv6 for the foreseeable future

IPv6 – Security

- What are the security implications of having a huge (sparse) address space?
 - Security through obscurity(?)
 - Blind random address scanning by worms is ineffective
 - Unlike in IPv4, which can be scanned in 5 minutes (!!) over a 10GbE link: <u>https://zmap.io/</u>
 - Targeted scanning works great, however...
 - Listen to P2P networks?
 - Listen to internal routing protocols? (OSPF, etc...)
 - Use Neighbor Discovery on infected host?
 - Snoop through host configuration and log files on infected host?
 - https://www.usenix.org/system/files/login/articles/920/bellovi n.pdf

IPv6 – Security (IPsec)

- Security IPSec support required optional in IPv6
 - IPSec encrypts each IP packet independently
 - Was originally required but dropped because not all devices (e.g. embedded) could support it
- IPsec features
 - Data encryption Data cannot be read or modified
 - Host authentication
 - Anti-replay Captured packets cannot be reused by an attacker
- What are the strengths and weaknesses of putting security at the IP layer? (Doesn't SSL work fine?)
 - Security is independent of higher layers (either applications or protocols like TCP/UDP)
 - Encryption overhead is incurred per-packet (high!)

Deployment

- Why should I deploy IPv6 today?
 - My customers can reach anywhere on the Internet today
 - Google, Facebook, Twitter, etc... will always be reachable
 - Only new applications / users will suffer
- How do I deploy IPv6?
 - **7** Flip a switch across the internet?
- Legacy routers may not be upgradeable
 - Hardware implementations are fixed
 - Software implementations may be insufficiently capable (either incapable or only at low performance)

- Islands of IPv6 in the sea of IPv4
 - Dual network stacks support both IPv4 and IPv6
 - Tunnel IPv6 across IPv4 networks
- Need to upgrade other systems
 - DHCP (SLAAC vs DHCPv6)
 - **7** DNS
 - Starting adding IPv6 addresses to root nameservers in 2008
 - All 13 of 13 root nameservers are IPv6 accessible now

30

IPv6 – Original Plan

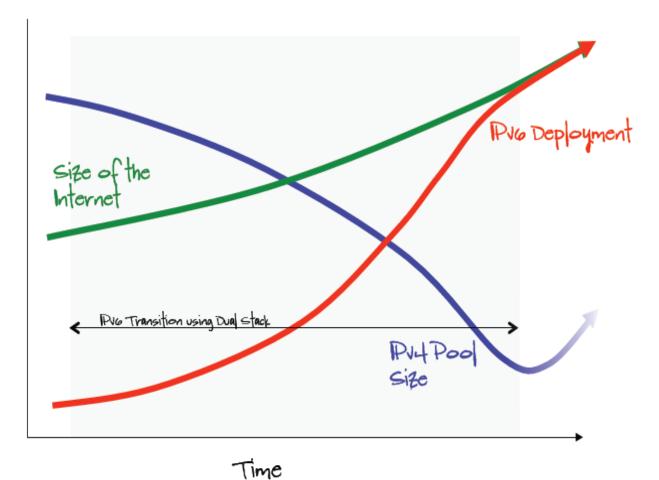
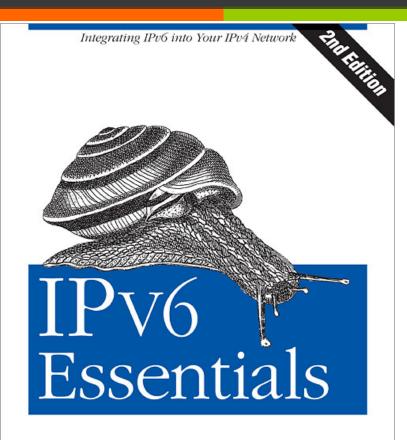
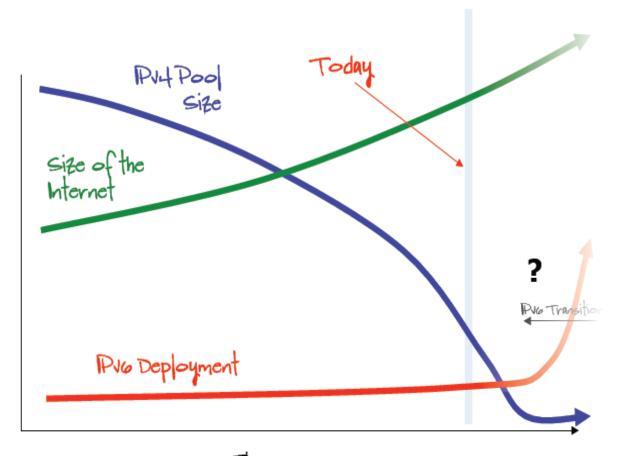
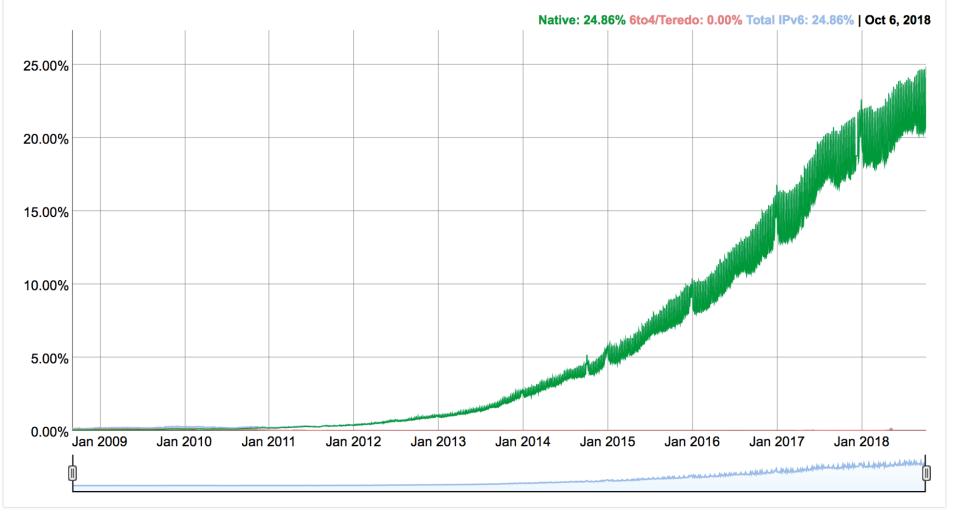



Figure from http://www.potaroo.net/presentations/2008-11-17-ipv6-failure.pdf


IPv6 – Current Status

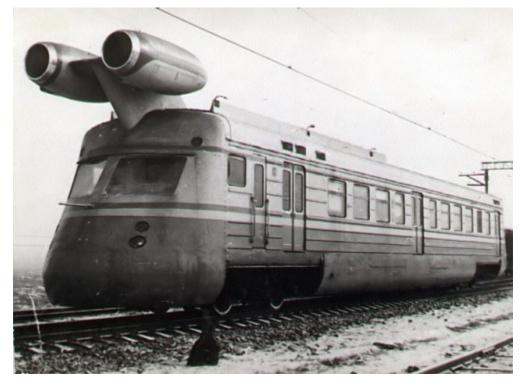
O'REILLY*

Silvia Hagen


IPv6–The New "Plan" (?)

IPv6 Adoption

IPv6 Adoption


We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

https://www.google.com/intl/en/ipv6/statistics.html

Advanced Computer Networking

IPv6 – Failure is an Option

Is this IPv6?

IPv6 – Failure is an Option

- → What happens if IPv6 "fails"?
 - Failure is defined as anything less than a complete migration from IPv4 to IPv6
 - Do we stop allowing new hosts to connect to the internet?
- What about using NAT?
 - Observation: Only 5-20% of assigned IPs are actually used by hosts.
 - Solution: Use lots of NAT to reclaim unused addressed
- What happens if this works, and we build "carrier-grade" NAT everywhere?
 - No more end-to-end connectivity?
 - Need coordination with ISP to deploy new services?
 - New opportunities for ISPs to filter traffic and charge for services?

http://www.potaroo.net/presentations/2008-11-17-ipv6-failure.pdf

IPv6 – Failure is an Option

- If an organization deploys NAT extensively, how can you get them to give up the reclaimed addresses?
- ↗ IP Address Marketplace
 - Can we create a marketplace? (Currently "forbidden" to sell IP blocks)
 - Imagine: "For Sale: One Lightly-Used IP Block (only used by grandma to check email on Sunday)"
 - Same problems as buying a used car:
 - Does the person selling the IP block actually "own" it?
 - What is the condition of the IP block? (If used for spam or illicit activity, IP block may be in blacklists worldwide)

http://www.potaroo.net/presentations/2008-11-17-ipv6-failure.pdf