
ì
Advanced Computer Networking
CYBR 230 – Jeff Shafer – University of the Pacific

HTTP/2

Timeline

ì HTTP/0.9 (not an RFC: https://www.w3.org/Protocols/HTTP/AsImplemented.html)
ì Initial version of HTTP — a simple client-server, request-response, telnet-friendly protocol
ì Request nature: single-line (method + path for requested document)
ì Methods supported: GET only
ì Response type: hypertext only
ì Connection nature: terminated immediately after the response
ì No HTTP headers (cannot transfer other content type files), No status/error codes, No URLs,

No versioning

Fall 2018Advanced Computer Networking

2

https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

Timeline

ì HTTP/1.0  – RFC 1945 (May 1996)
ì Browser-friendly protocol
ì Provided header fields including rich metadata about both request and response

(HTTP version number, status code, content type)
ì Response: not limited to hypertext (Content-Type header provided ability to

transmit files other than plain HTML files — e.g. scripts, stylesheets, media)
ì Methods supported: GET , HEAD , POST
ì Connection nature: terminated immediately after the response

Fall 2018Advanced Computer Networking

3

https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

Timeline

ì HTTP/1.1 – RFC 2068 (January 1997)
ì Performance optimizations and feature enhancements

ì Persistent and pipelined connections
ì Chunked transfers
ì Compression/decompression
ì Virtual hosting (a server with a single IP address hosting multiple domains)

ì Methods supported: GET , HEAD , POST , PUT , DELETE , TRACE , OPTIONS
ì Connection nature: long-lived

Fall 2018Advanced Computer Networking

4

https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0

Fall 2018Advanced Computer Networking

5

Motivations

ì What’s wrong with HTTP/1.1?
ì Complicated specification
ì Many options / incomplete implementations
ì Performance limitations

ì Why does it take so long to load a web page?
ì https://bagder.gitbooks.io/http2-explained/en/

6

Fall 2018Advanced Computer Networking https://bagder.gitbooks.io/http2-explained/en/part2.html

https://bagder.gitbooks.io/http2-explained/en/
https://bagder.gitbooks.io/http2-explained/en/part2.html

Fall 2018Advanced Computer Networking

7

https://httparchive.org/

https://httparchive.org/

Fall 2018Advanced Computer Networking

8

https://httparchive.org/reports/state-of-the-web

https://httparchive.org/reports/state-of-the-web

Fall 2018Advanced Computer Networking

9

https://httparchive.org/reports/state-of-the-web

https://httparchive.org/reports/state-of-the-web

Fall 2018Advanced Computer Networking

10

https://httparchive.org/reports/state-of-the-web

https://httparchive.org/reports/state-of-the-web

Performance

ì Many files (Median of ~75 in 2018)
ì Some files are large, some files are small

ì Many TCP sockets (Median of ~19 in 2018)
ì More than one file per socket
ì Resource penalty + time penalty to just open yet more

sockets

ì Problems
ì Latency between requests

ì HTTP Pipelining typically disabled by default
ì Head-of-line blocking

ì Multiple requests over same socket, large file blocks small file
ì Not solved by HTTP Pipelining

Fall 2018Advanced Computer Networking

11

HTTP Performance Hacks

ì Sprite Sheets

ì Instead of sending
many tiny images,
send one big image
and use JavaScript/CSS
to pull out the desired
pieces

ì Inefficient if only a few
pieces are needed

Fall 2018Advanced Computer Networking

12

HTTP Performance Hacks

ì Inlining
ì Embed data inside

the CSS file instead
of as separate files

ì Concatencation
ì Combine multiple JS

/ CSS files into
megafiles before
sending to client

Fall 2018Advanced Computer Networking

13

.icon1 {
background:

url(data:image/png;base64,<data>)
no-repeat;
}

.icon2 {
background:

url(data:image/png;base64,<data>)
no-repeat;
}

HTTP Hacks

ì Domain Sharding

ì Avoid per-host limits
on # of connections by
spreading website
across many
“separate” hostnames

ì How does the browser
(or OS) prioritize these
connections?

Fall 2018Advanced Computer Networking

14

Timeline

ì IETF HTTPbis working group
ì Formed in 2007
ì Finalized HTTP/2 – RFC 7540 (May 2015)
ì Finalize HPACK – RFC 7541 (May 2015)
ì Heavily derived from Google SPDY work
ì https://http2.github.io/

ì Google SPDY
ì Released in Chrome in 2010
ì Withdrawn in Chrome in 2016

Fall 2018Advanced Computer Networking

15

https://http2.github.io/

HTTP/2

ì Make the web faster and eliminate the design hacks

ì Maintain high-level compatibility with HTTP/1.1
ì Methods, status codes, URIs, …
ì No changes to web pages, web apps, …

ì Reduce Latency -> Reduce Page Load Times
ì Compress headers
ì Server Push
ì No head-of-line blocking
ì Request pipelining
ì Request multiplexing over single connection

Fall 2018Advanced Computer Networking

16

Fall 2018Advanced Computer Networking

17

HTTP/2 uses
binary format

HTTP/2 Binary

ì Advantages of Binary
ì Simplifies parsing (Case? Line endings?

Whitespace?)
ì Compact representation
ì Simplifies multiplexing and prioritization
ì Impact: Reduces latency, improves throughput

ì Disadvantages of Binary
ì Can’t fire up Telnet to port 80 and demonstrate

HTTP any more
(couldn’t do that with HTTPS anyway…)

Fall 2018Advanced Computer Networking

18

HTTP/2 Protocol

Fall 2018Advanced Computer Networking

19

https://developers.google.com/web/fundamentals/performance/http2/

https://developers.google.com/web/fundamentals/performance/http2/

HTTP/2 Protocol

ì Stream = Bidirectional flow of data
ì Streams can carry 1 or more messages
ì Binary format allows multiple streams to exist over

single TCP connection

ì Message = Collection of frames that, combined,
form a request or response message

ì Frame = Fundamental unit of communication
ì Note that these are frames inside the TCP

connection, not Ethernet frames…

Fall 2018Advanced Computer Networking

20

HTTP/2 Protocol

Fall 2018Advanced Computer Networking

21

https://developers.google.com/web/fundamentals/performance/http2/

https://developers.google.com/web/fundamentals/performance/http2/

HTTP/2 Protocol

Frame Format
ì Length

ì Type

ì Flags

ì Stream Identifier

ì Payload

Frame Types
ì DATA

ì HEADERS

ì PRIORITY

ì PUSH_PROMISE
ì Server push

ì WINDOW_UPDATE
ì Flow control

ì (10 frame types in total)

Fall 2018Advanced Computer Networking

22

HTTP/2 Multiplexing

Fall 2018Advanced Computer Networking

23

https://developers.google.com/web/fundamentals/performance/http2/

ì Interleave multiple requests / responses without head-of-line blocking
ì Ability for client or server to prioritize frames

ì Single TCP connection to each “origin” (host)
ì Connection overhead and initial latency (especially TLS) is amortized over multiple file transfers
ì More efficient than opening multiple connections

https://developers.google.com/web/fundamentals/performance/http2/

HTTP/2 Compression

ì HPACK Header Compression (RFC 7541)

ì Fields can be encoded with static Huffman
code
ì Reduces transfer size

ì Client and server maintain list of previously-
seen fields
ì No need to re-transmit duplicate values

(refer to them by index number)

ì Operates with bounded memory requirements
(i.e. embedded systems)

ì Resistant to security flaws
(e.g. CRIME – Compression Ratio Info-leak
Made Easy)
ì Steal HTTP cookies from TLS connection by

observing impact of random payloads on
compressed ciphertext length

Fall 2018Advanced Computer Networking

24

https://developers.google.com/web/fundamentals/performance/http2/

https://developers.google.com/web/fundamentals/performance/http2/

HTTP/2 Compression

ì Is header compression worth the code?

ì Typical page
ì ~75 assets
ì ~1400 bytes per request (referrer tag, cookies, …)

ì 7-8 round trips just to transmit requests

ì Limited by TCP slow start congestion control
ì Can only have a few outstanding packets until ACKs begin

returning

ì Benefits increase the greater your network latency
ì Mobile LTE latency: 100+ ms (best case)

Fall 2018Advanced Computer Networking

25

HTTP/2 Server Push

ì Client requests Resource X

ì Server anticipates that Resource Y will be requested next
ì Perhaps Resource Y is a dependency?

ì Server pushes Resource Y to client despite never being requested
ì Client saves Resource Y in cache

ì Client can elect not to accept pushed resources at all or limit total number/size

Fall 2018Advanced Computer Networking

26

https://developers.google.com/web/fundamentals/performance/http2/

https://developers.google.com/web/fundamentals/performance/http2/

HTTP/2 Security

ì HTTP/2 standard (RFC 7540) supports unencrypted
connections

ì Subject of much debate! (Should encryption be
mandatory?)
ì Pros:

ì Security security security
ì Prevents tampering from annoying middleboxes

assuming anything over port 80 is plain HTTP/1.1
ì Cons:

ì Not all content has to be encrypted
ì Performance / latency / etc…

Fall 2018Advanced Computer Networking

27

HTTP/2 Security

ì HTTP/2 standard (RFC 7540) supports unencrypted
connections
ì Client starts with HTTP/1.1 and sends header:

Upgrade: h2c
ì Server responds with HTTP 101 Switching

Protocol status code
ì Rare in wild! (curl?)

ì Major browser implementations (Firefox, Chrome,
Safari, etc…) only support HTTP/2 over TLS connections
ì Consistent with overall design philosophy of HTTPS

everywhere: New features only enabled over HTTPS

Fall 2018Advanced Computer Networking

28

HTTP/2 Protocol

ì How to “enable” HTTP/2?

ì Application Layer Protocol Negotiation

(ALPN) – RFC 7301

ì Part of TLS handshake

ì Client provides server with list of protocols it

supports

ì Server picks one it prefers

ì Performance optimization that avoids additional

roundtrip of starting with HTTP/1.1 and upgrading to

HTTP/2

Fall 2018Advanced Computer Networking

29

HTTP/2 Adoption

ì Widespread support!

ì Web browsers
ì Chrome, Safari, Firefox, Edge, …

ì Web servers
ì Apache, nginx, IIS, …

ì Content delivery networks
ì Akami, Azure, Cloudflare, AWS CloudFront, …

Fall 2018Advanced Computer Networking

30

Fall 2018Advanced Computer Networking

31

https://httparchive.org/reports/state-of-the-web

https://httparchive.org/reports/state-of-the-web

