

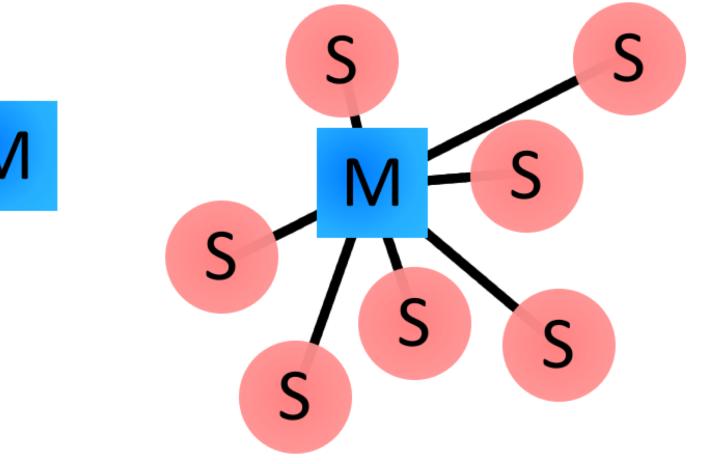
Advanced Computer Networking

CYBR 230 – Jeff Shafer – University of the Pacific

Advanced Computer Networking

Design Goals

- Short range wireless communication
 - ↗ Voice, audio, data, …
- Low power
- Low cost
 - Low skill (to configure/use)


Advanced Computer Networking

Piconets

- Bluetooth network = "Piconet"
 - Ad-hoc computer network
- Master device: Coordinates communication
 - Can send data to any slave
 - Can request data from any slave
 - Defined as "device that establishes the Piconet"
- Slave device
 - Only allowed to communicate with master (can't communicate with other slaves)
- Maximum of 8 devices
 - **7** 1 master, 7 slaves

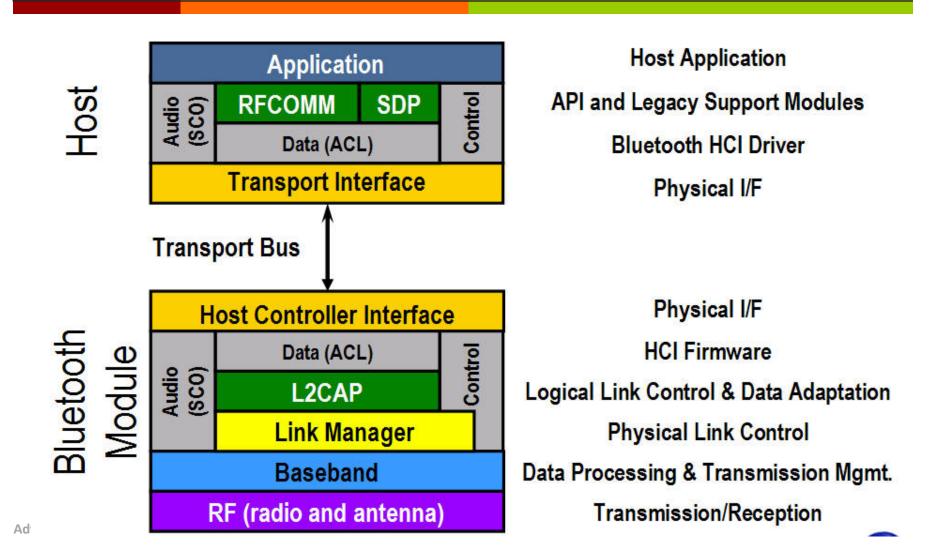
Piconets

S

Bluetooth Special Interest Group

- Develops Bluetooth standards
- Qualification and interoperability testing
- Licenses technologies and <u>trademarks</u> to manufacturers

- "Promoter" Class Members
 - **7** Apple
 - **7** Ericsson
 - **7** IBM
 - 7 Intel
 - Lenovo
 - Nokia
 - Microsoft
 - Toshiba


Development History

Year	Version	New Features
1998	1.2	Extended Synchronous Connections (retransmits corrupted packets) 10 meter range, 1Mbps data rate
2004	2.0	Enhanced Data Rate (EDR) - 3Mbps
2007	2.1	Secure Simple Pairing
2009	3.0	Bluetooth High Speed (uses ad-hoc 802.11 WiFi - 24Mbps)
2010- 2014	4.0	Bluetooth Low Energy (BLE) protocol Significantly different protocol from Bluetooth "classic" and "high speed" (50m range, 0.27Mbps data rate, significant power savings)
2016	5.0	4x range, 2x speed, 8x message capacity

Protocol Stack

8

Protocol Stack

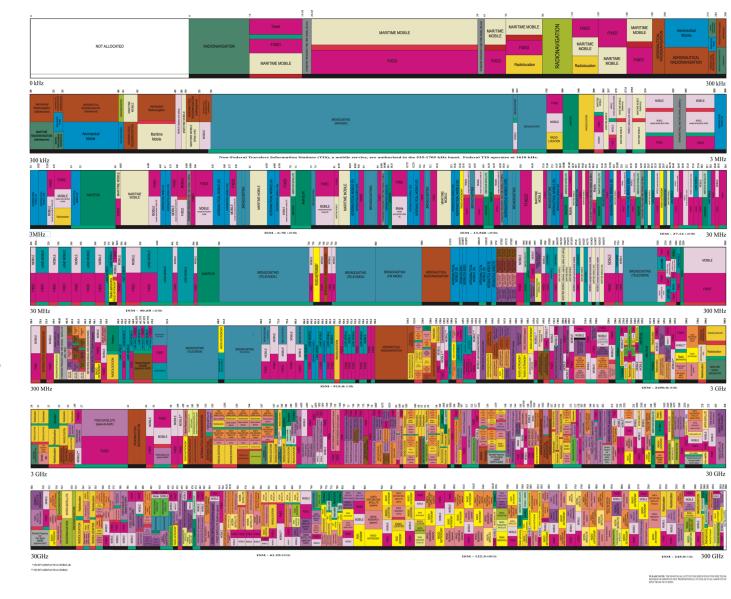
Transport Protocol Group

- - Sends and receives modulated bit streams
- Baseband Layer
 - Packet framing, timing, and link flow control
- Link Manager
 - Manages connection states and power management
 - Enforcing Fairness among slaves
- Logical Link Control & Adaptation Protocol (L2CAP)
 - Multiplexing of higher level protocols
 - Segmentation & reassembly of large packets
 - Device discovery & QoS

Middleware Protocol Group

- Service Discovery Protocol (SDP)
 - Means for applications to discover device info, services and its characteristics
- **↗** TCP/IP
 - Packet data communication
- **RFCOMM**
 - Cable replacement protocol
 - Emulates serial port

Physical Layer (Radio)


7

12

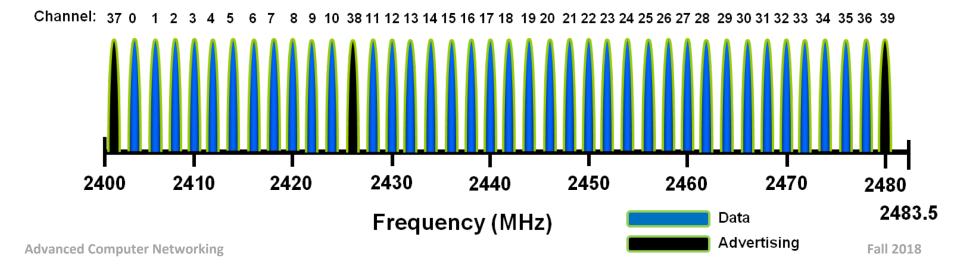
UNITED STATES FREQUENCY ALLOCATIONS

THE RADIO SPECTRUM

https://www.ntia.doc.gov/page/2011/united-states-frequency-allocation-chart [Last Update: 2016]

For sole by the Superintenders of Decements, U.S. Government Printing Differ Instants beekness gave Phone tell free (964) 312-1400, Washington, DC area (202) 512-3000 Envirole (202) 113-2103 Male Stars (950 Washington, DC 2000) 4001

Physical Layer

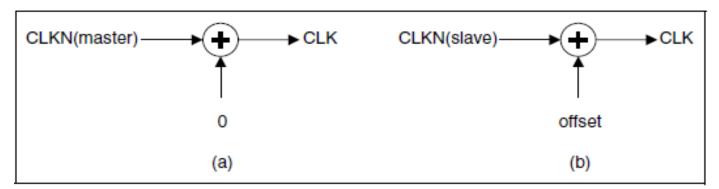

- **Frequency:** 2.4000-2.4835GHz
 - **7** Industrial, Scientific and Medical (ISM) radio band
- Other users in 2.4-2.5GhZ ISM band
 - ZigBee personal area networks (IEEE 802.15.4)
 - **WiFi (IEEE 802.11)**
 - Cordless phones
 - All manner of unlicensed cruft
 - Microwave ovens (use this frequency for <u>heating</u>)

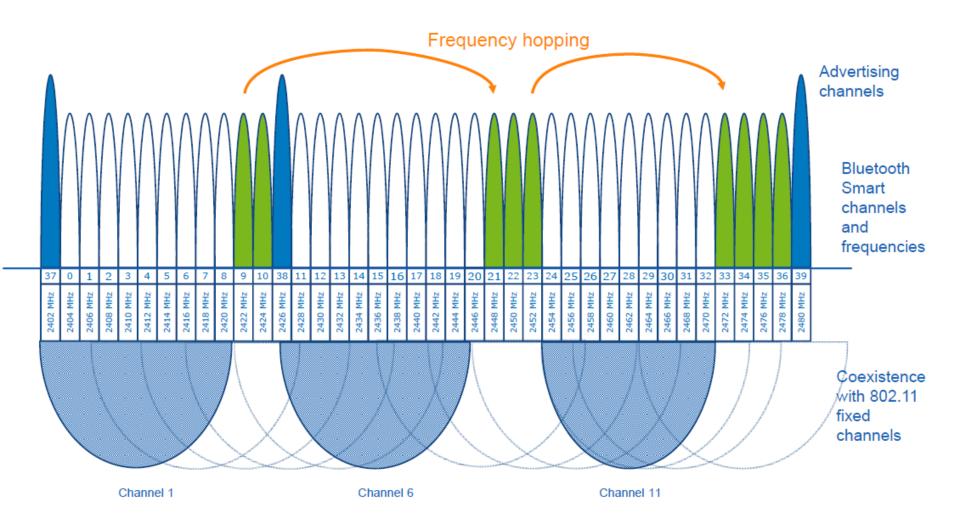
Physical Layer

オ Channels

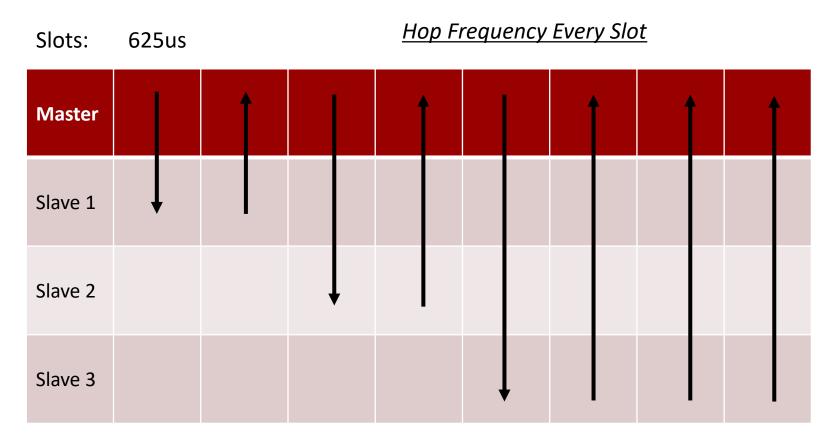
- Bluetooth Low Energy 40 2MHz channels

Bluetooth Low Energy (BLE) Channels




Physical Layer

- Frequency Hopping Spread Spectrum
 - Change frequency with every packet
 - Packets can be 1, 3, or 5 slots long (slot = 625us)
 - 7 1600 hops/second (1/1600 = 625us)
 - Pseudo-random frequency hop sequence seeded by master MAC address and controlled by master clock


Piconet Clock

- All timing and scheduling in Piconet is based on single clock (Master device)
- Clock is derived from the hardware clock plus an offset
 - Master device has an offset of 0
 - Slave devices obtain offset from network (master)
- All hardware clocks run at the same nominal rate, but mutual drift causes inaccuracies
 - **オ** Slaves offsets must be regularly updated

Medium Access Control: Time Division Duplexing (TDD)

Master transmits in even slots, Slave(s) transmit in odd slots

Medium Access Control: Time Division Duplexing (TDD)

- Master device uses <u>polling</u> approach to schedule transmissions and eliminate collisions within Piconet
 - **M** polls specific **S** by address
 - S responds with data
 (all other S's are silent)
 - ➤ M polls all S's in round-robin fashion

Power Classes (Bluetooth Classic)

Transmit power (and range) varies by Bluetooth device

Class Number	Max Output Power (dBm)	Max Output Power (mW)	Typical Range
Class 1	20 dBm	100 mW	100 m
Class 2	4 dBm	2.5 mW	10 m
Class 3	0 dBm	1 mW	1 m
Class 4	-3 dBm	0.5 mW	0.5 m

Bluetooth Low Energy: 10mW max, 10m range

Name	Bluetooth Classic	Bluetooth 4.0 Low Energy (BLE)	ZigBee	WiFi
IEEE Standard	802.15.1	802.15.1	802.15.4	802.11 (a, b, g, n)
Frequency (GHz)	2.4	2.4	0.868, 0.915, 2.4	2.4 and 5
Maximum raw bit rate (Mbps)	1-3	1	0.250	11 (b), 54 (g), 600 (n)
Typical data throughput (Mbps)	0.7-2.1	0.27	0.2	7 (b), 25 (g), 150 (n)
Maximum (Outdoor) Range (Meters)	10 (class 2), 100 (class 1)	50	10-100	100-250
Relative Power Consumption	Medium	Very low	Very low	High
Example Battery Life	Days	Months to years	Months to years	Hours
Network Size	7	Undefined	64,000+	255

Advanced Computer Networking

https://learn.sparkfun.com/tutorials/bluetooth-basics

Baseband Layer

Baseband Layer

- In-order delivery of byte streams
- Coordinates frequency hop sequences for synchronization and transmission
 - Important that sender and receiver hop to the same frequency!
- Discovers neighboring devices
- Establishes links
 - Synchronous Connection Oriented (SCO)
 - Asynchronous Connection-Less (ACL)

LinkTypes

Synchronous Connection Oriented (SCO)

- Analogy: "circuit switching"
- Point to point full duplex link between master and slave
- Provides fixed bandwidth allocation (reserved by master)
- **7** Established by master, closed by master
- Application: Voice communication
- No retransmission if packets are lost

LinkTypes

Asynchronous Connection-Less (ACL)

- Analogy: "packet switching"
- Provides momentary bandwidth between master and slave
 - Variable bandwidth based on usage
 - No reserved slots
- Application: Data communication
 - Retransmissions if packets are lost
 - Used by advanced Bluetooth functions (including high quality audio)

Packet Format

72 bits	54 bits	0-2740 bits (240 for 1-slot frame, 1490 for 3-slot frame, 2740 for 5-slot frame
Access Code	Header	Data

- Access Code Identifies a Piconet
 - **7** Role: Synchronization, identification, signaling (inquiry, paging)
 - **7** 4 bits − Preamble
 - - If bits don't match your Piconet, packet is ignored
 - **4** bits Trailer

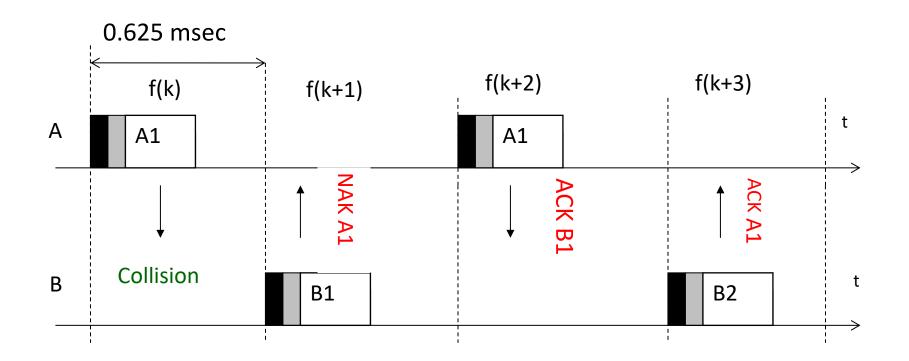
Packet Format

72 bits	54 bits	0-2740 bits (240 for 1-slot frame, 1490 for 3-slot frame, 2740 for 5-slot frame		
Access Code	Header	Data		
Header – Addressing and Options				

- Addressing and Options
 - 3 bits Address of slave (could be either sender or receiver) 7
 - 4 bits Packet Type (12 data types, 4 control types)
- 1 bit Flow Control
- 1 bit ARQ (ARQ = Automatic Repeat Request. i.e. ACKN) bits
 - 1 bit Sequence Number (Identify retransmitted packets)
 - 8 bits HEC (Header Error Control, i.e. CRC)
 - Encode with 1/3 FEC (Forward Error Correction) for 54 bit total length 7

18

Addressing


Active Member address (AM_ADDR)

- **3** bits used in packet header
- Address 001-111 representing slaves 1-7
- Address 000 representing broadcast address
- Bluetooth Device address (BD_ADDR)
 - 48-bit unique addresses (MAC addresses)
 - Upper 24 bits Organization Unique Identifier (OUI)
 - Lower 24 bits Randomly assigned to device
 - **7** Eg: **001122**334455

Error Correction

- ↗ ISM band is noisy!
- Multiple prevention & recovery mechanisms
 - **7** 1/3 rate FEC for headers and voice
 - 2/3 rate FEC for DM packets (medium data rate)
 - **7** Stop and wait ARQ (sender notified of receipt in next slot)
 - **7** CRC to detect payload errors
- Frequency Hopping Spread Spectrum + Adaptive Frequency Hopping (AFH) helps to avoid continuously noisy bands

Automatic Repeat Request (ARQ)

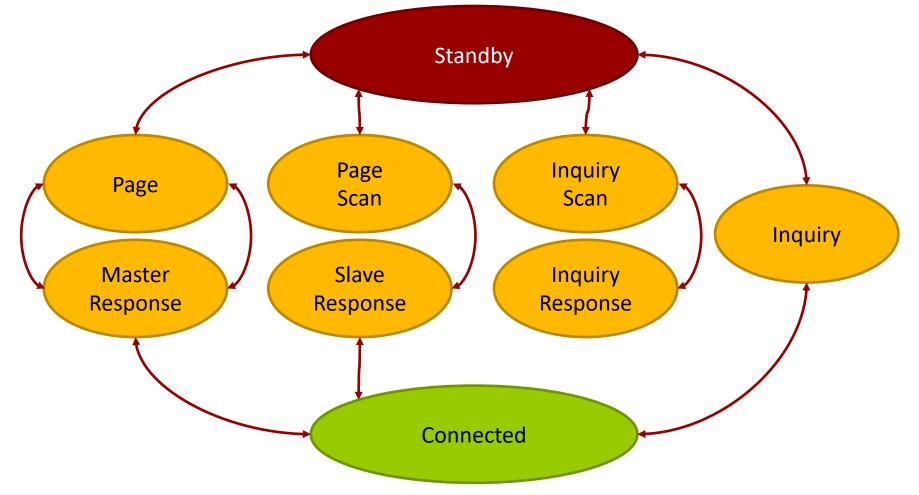
Sender notified of packet receipt (yes or no) in timeslot immediately following transmission. (Simple stop and wait ARQ scheme)

Packet Types

Control

- ID Signals piconet. Only contains access code
- NULL Contains link control information. Only contains access code and header
- POLL Similar to NULL, forces slaves to return response
- FHS Frequency Hopping Synchronization. Updates real-time clock across piconet

Data


- SCO Synchronous Connection Oriented
 - HV1, HV2, HV3 (High Quality Voice)
 - **DV** (Combined Data/Voice)
- ACL Asynchronous Connectionless
 - DM1, DM3, DM5 (Data, Medium Rate)
 - DH1, DH3, DH5 (Data, High Rate)
- 1=1/3FEC, 2=2/3 FEC, 3=No FEC (tradeoff of time vs redundancy)

Connection Establishment

- Chicken and Egg problem: How do master and slave find each other in a Frequency Hopping Spread Spectrum network?
 - How do they discover each other's existence?

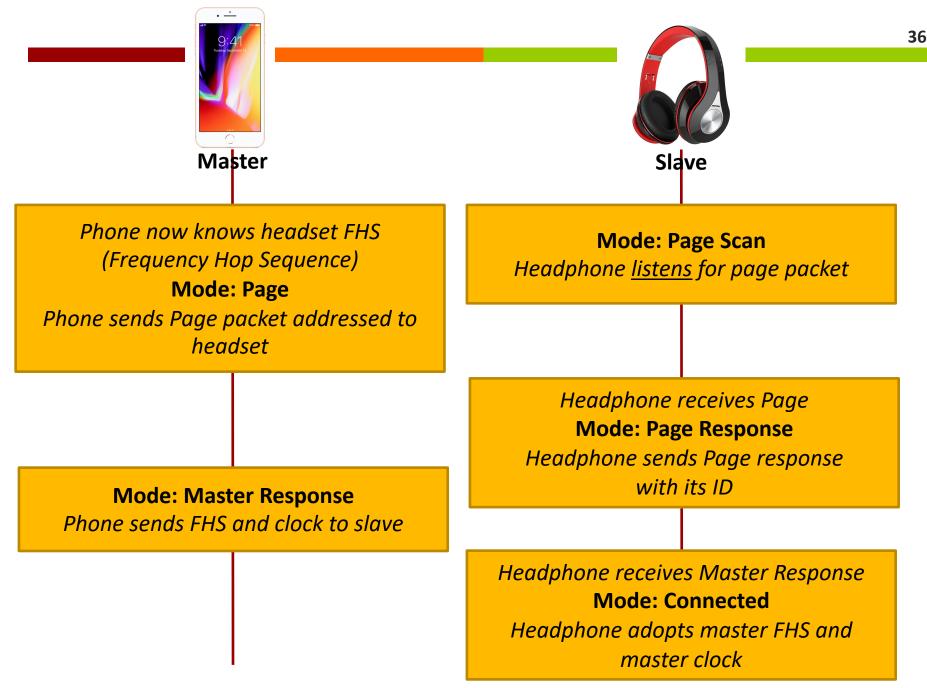
 - **オ** Share Bluetooth Device address?
 - Agree on pseudo-random Frequency Hop Sequence (FHS)

Connection Establishment State Machine

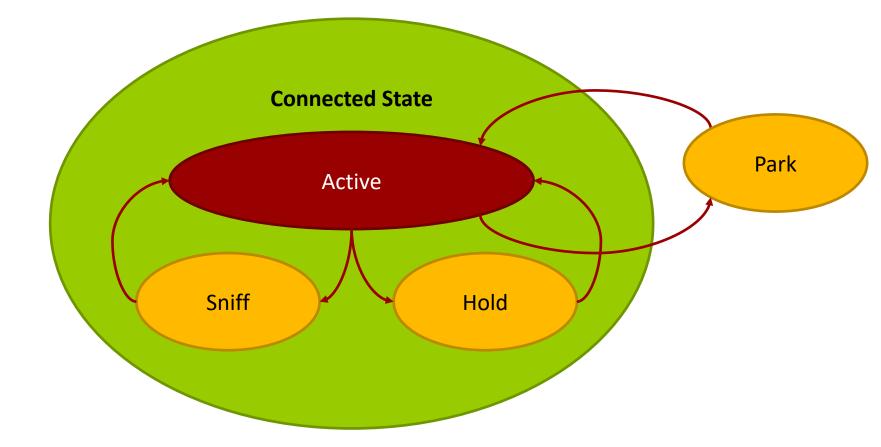
Phone periodically looks for new devices Mode: Inquiry

Master

Phone sends Inquiry packet


- Addressed to GIAC (General/Unlimited Inquiry Access Code)
- Repeated on <u>inquiry hop sequence</u> of channels

Slave User powers on headphones


User powers on headphones **Mode: Inquiry Scan** Headphone <u>listens</u> for inquiry packets

> Headphone receives Inquiry Mode: Inquiry Response

Headphone sends inquiry response with device address and FHS

Connection Establishment State Machine

Modes in Connected State

- Active Mode
 - Slave listens (scans) to every master transmission
- **Sniff** Mode
 - Modest power / reduced bandwidth mode
 - Slave does not listen (scan) at every possible M-to-S slot, but at a reduced frequency coordinated with master
- **Hold** Mode
 - Slave does not listen for a time duration arranged with master (duty cycle < 1%)
 - No ACL (SCO only)
- **Park** Mode
 - Low power sleeping mode
 - **7** Gives up Active Member address, maintains synchronization
 - Communication only via broadcast messages (infrequent)

Protocol Stack

IMP – Link Management Protocol

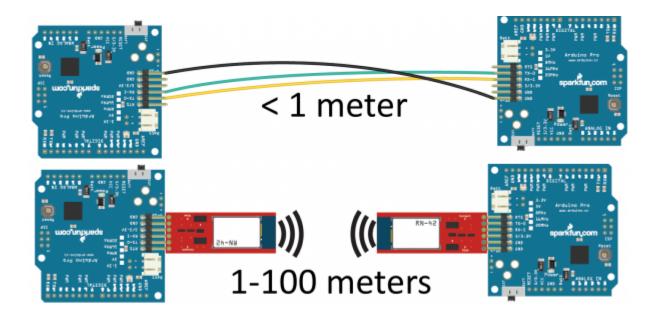
Setup and control link between two devices

L2CAP – Logical Link Control and Adaptation Protocol

- Multiplex multiple logical connections between two devices
- ➔ Segmentation, reassembly, retransmission, QoS
- **7** Only for **ACL** (Asynchronous Connection-Less) Links

SDP – Service Discovery Protocol

Discover which profiles can be used between two devices


Advanced Computer Networking

Profiles

- Application Layer = "Profiles"
- Example use cases, attributes, services, data formats, ... developed by the Bluetooth SIG to accomplish a given task
 - NOT an API
 - Intended to allow interoperability
- 36 profiles currently listed on Wikipedia (exhaustive list?)
 - https://en.wikipedia.org/wiki/List_of_Bluetooth_profiles

Serial Port Profile (SPP)

Wireless replacement for RS-232 serial port

Human Interface Device (HID)

- Wireless replacement for user input devices
 - Mice, keyboards, joysticks, ...
- Wrapper for USB Human Interface Device protocol

Hands-Free Profile (HFP) / Headset Profile (HSP)

- Hands-Free Profile (HFP)
 - Car audio (basic)
 - Synchronous Connection Oriented (SCO) link for audio stream (mono)
- Headset Profile (HSP)

 - SCO link for audio (mono)
 - AT commands from GSM phones for basic control: ring, answer call, hang up, adjust volume

A2DP/AVRCP

- Examples: Headsets, soundbars, car audio, etc...
- Advanced Audio Distribution Profile (A2DP)
 - One-way audio stream (but higher quality, 2 channels)
 - Codecs: SBC, MPEG-1, MPEG-2, AAC, ATRAC
- ↗ A/V Remote Control Profile (AVRCP)
 - Typically implemented in parallel with A2DP
 - Remote control of audio stream (pause, fast forward, ...)
 - Metadata (artist, title, ...)

Profiles

- Many other profiles...

 - Basic Printing Profile (BPP)
 - Personal Area Networking Profile (PAN)
 - Mesh Profile (MESH)

Mesh Networking

Bluetooth History

- Bluetooth "Classic" Bluetooth Basic Rate / Enhanced Data Rate (BR / EDR)
 - Wireless headsets, mice, keyboards, ...
 - 1:1 communication pattern (Master<->Slave)
- Bluetooth Low Energy (BLE)
 - Activity trackers, wearables, beacons ...
 - 1:many communication pattern (Beacons broadcasting)
- What's next? Many:many communication pattern (i.e. Mesh networking)
 - Devices can interconnect and form larger networks
 - Devices can relay messages for other devices not in direct radio range
 - Applications in IoT devices
 - **7** Building automation, commercial lighting, sensor networks
 - ↗ Introduced in Bluetooth 5 (2017)
 - Competes with other IoT wireless standards: Zigbee, Z-Wave, LoRa
 - **One Bluetooth to Rule Them All!**

High-Level API

- Publish: Devices send messages to specific mesh addresses (e.g. binary value corresponding to concept like "front yard lights")
- Subscribe: Devices receive messages that were sent to specific mesh addresses
- New device mode: **Relay**
 - Relays retransmit messages received from other devices, thus extending network range
 - Maximum of 127 hops

Routing algorithm: Flooding

- All devices within range receive messages
- All devices which are *relays* retransmit messages
- Advantages
 - Simplicity (both in relay implementation and lack of end-user configuration)
- Disadvantages
 - Duplication of messages / overhead

- All packets include TTL
 - Limits number of hops / times packet can be retransmitted
- All devices transmit heartbeat messages periodically
 - Allow relays to learn about topology and distance from other devices
 - **オ** TTL is *adaptive* − Set based on size (max hops) of network
- All devices have **message cache**
 - Have I see this message before? If yes, no need to process it further (or forward it, etc...)

- New concept for low-power devices as part of wireless mesh
- New device mode: Low power nodes
 - Battery powered, limited energy, must sleep for majority of time so battery can last for months/years
 - Example: Temperature sensor
 - Reads temperature and transmits periodically
 - Sleeps otherwise to conserve energy
 - But what if the temperature sensor also needs to *listen* for infrequent data from network? (New security keys, for example, or admins changing the reporting interval...)
- New device mode: Friend
 - Device that is not power constrained
 - Will store messages addressed to low power nodes and deliver them upon request by lower power node (which can remain sleeping)

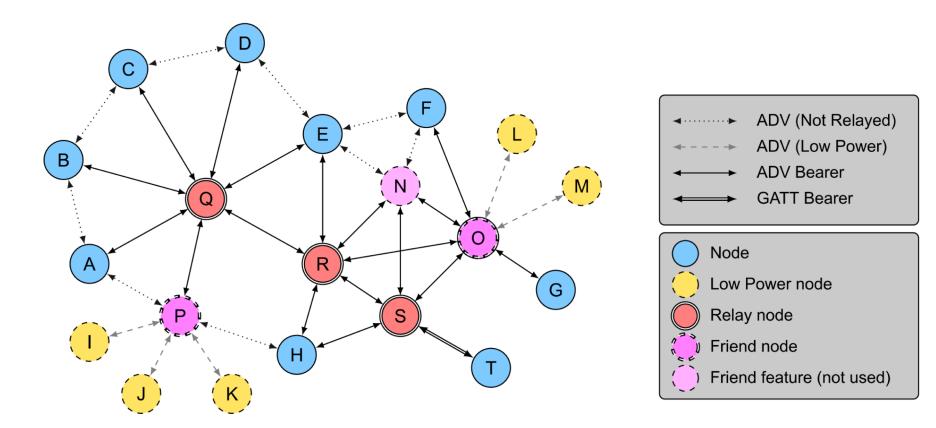


Figure 2.8: Example Topology of a mesh network

Advanced Compute

https://www.bluetooth.com/specifications/mesh-specifications

Fall 2018

- Mesh network adds a new protocol stack which sits on top of Bluetooth Low Energy stack
 - Complexity....

https://blog.bluetooth.com/an-intro-to-bluetooth-mesh-part2

- "Bluetooth[®] mesh networking was designed with security as its number one priority and from the ground up."
 - https://blog.bluetooth.com/bluetooth-meshsecurity-overview
- So, problem solved?

- Encryption: All mesh messages are encrypted and authenticated
- Separation of Concerns:
 - Network security
 - Application security
 - Device security
- Area isolation: Mesh networks can be divided into subnets (cryptographically separate)
- Key refresh: Security keys can be rotated

- Message obfuscation: Privacy for senders
- Replay attack protection
- Trashcan attack protection: Nodes can be removed securely from network (keys blacklisted, new keys provisioned and deployed)
- Secure device provisioning: Add nodes to mesh network in controlled process

- Three levels of security keys enable separation of concerns
- **Device Key**
 - Used for device provisioning and configuration

Network Key

- Allow node to join a subnet
- Allow node to decrypt and authenticate up to the network layer

AppKeys

- Allow node to decrypt and authenticate application-layer data
- Design flexibility: Node can relay messages for the network (subnet) without the ability to decrypt/read/modify the application data being passed on the subnet

- Privacy key (based on NetKey) encrypts network headers such as source address
 - Prevents passive analysis (from non-subnet members without NetKey) from tracking nodes and users
- Sequence Number (SEQ) field allows replay attacks to be identified and ignored

Security

- **Early Bluetooth (1.x) was a security wasteland...**
 - Was possible to obtain link key just by passively sniffing the pairing process
- Method: Link Manager Protocol (LMP) Pairing (w/ PIN-code)

Security

- Goal: Establish *shared secret* between two Bluetooth devices: Link Key
- Link Key is used to authenticate two devices to each other
 - **7** Can be re-used when devices re-pair in the future
- Encryption Key is derived from the Link Key and used to exchange data between two devices
 - Encryption key changes for each connection

Security – LMP Pairing

Shared inputs to Verifier Claimant algorithm (initiator) BDADDR of the two 7 init_pairing devices Generate 7 16-byte random random number number created by LMP in rand the initiator LMP_accepted PIN PIN 7 PIN code entered by the user on both Calculate Kinit Calculate Kinit devices (except for devices with "fixed LMP_comb_key PIN") LMP comb key Not transmitted on Imp-authentication air – "secret" Link Key Link Key

https://www.ellisys.com/technology/een_bt07.pdf

Fall 2018

Security – LMP Pairing

- Weakness PIN code is the only part of the Link Key calculation that is not transmitted over the air, but it is only 4 digits
 - 10,000 keys for attacker to brute force if they have passively captured the rest of the LMP Pairing process
- Bluetooth is low power and short range, do we really need to worry about security?

Security

64

2.4GHz 25dBi Directional Outdoor Wireless Yagi Antenna
\$12.97 from Walmart.com
Intended for WiFi, but it's the same frequencies... *Combine with an amplifier...*

Security

- Bluetooth 2.1 made a serious effort at fixing security problems at a *protocol* level with Secure Simple Pairing
 - **↗** This design has <u>secure</u> in the name....
 - Still possible to have implementation errors (specification incorrectly implemented or specification unclear)

Security – Secure Simple Pairing

- Increased security: PIN code is not part of Link Key calculation
 - **7** May be present for device authentication only
- Elliptic-Curve Diffie-Hellman (ECDH) Key Exchange used to establish shared secret (192-bit number) that is not transmitted over the air
 - Each device has public key (shared) and private key (not shared)

Security

67

Bluetooth 4.1 made further security enhancements under the name Secure Connections

Security Mechanism	Legacy	Secure Simple Pairing	Secure Connections
Encryption	E0	E0	AES-CCM
Authentication	SAFER+	SAFER+	HMAC-SHA256
Key Generation	SAFER+	P-192 ECDH HMAC-SHA-256	P-256 ECDH HMAC-SHA-256

Table 1.1: Security algorithms

BlueBorne[™]

BlueBorne Vulnerabilities (2017)

68

Advanced Computer Networking

BlueBorne Vulnerabilities

- Reported by Armis (IoT security Firm), Sept 12 2017
- Not 1, not 2, but <u>8</u> zero-day vulnerabilities across a variety of Bluetooth platforms
 - Android, iOS, Windows, Linux, Amazon Echo, ...
- ↗ Think "airborne" (as in, contagious...)

https://armis.com/blueborne/

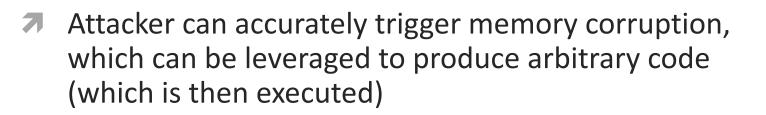
http://go.armis.com/blueborne-technical-paper

BlueBorne Attack Overview

- 1. Locate active Bluetooth devices (even if not set to discoverable mode)
- 2. Obtain MAC address of Bluetooth device
- 3. Probe device, use OS fingerprinting to tailor attack
- 4. Exploit Exploit Exploit
- 5. Choice:
 - 1. Man-in-the-Middle attack and control communication?
 - 2. Full control over device?

CVE-2017-0785 – Information Leak Vulnerability

- Weakness in Service Discovery Protocol (SDP)
 - Used to identify services offered by neighboring devices



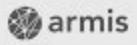
- Attacker sends set of requests to service
- Service discloses memory bits in reply
- Potential for attacker to recover encryption keys, eavesdrop on communication, etc...

CVE-2017-0781 – Remote Code Execution Vuln <u>#1</u>

- Weakness in Bluetooth Network Encapsulation Protocol (BNEP)
 - Used for Internet connection sharing (i.e. tethering)

No user interaction, authentication, or pairing required (due to lack of authorization validation)

- CVE-2017-0782 Remote Code Execution Vuln <u>#2</u>
- Weakness in Bluetooth Network Encapsulation Protocol (BNEP), Personal Area Networking (PAN) profile
 - Used for Internet connection sharing (i.e. tethering)
 - ➔ Specifically, establishing an IP network
- Attacker can accurately trigger memory corruption, which can be leveraged to produce arbitrary code (which is then executed)
- No user interaction, authentication, or pairing required (due to lack of authorization validation)


- CVE-2017-0783 Bluetooth Pineapple MITM Attack
- Weakness in Personal Area Networking (PAN) profile
 - Used in tethering to establish an IP network

- Attacker can create malicious network interface, reconfigure IP routing, and force network traffic through malicious interface
- No user interaction, authentication, or pairing required (due to lack of authorization validation)

Android Take Over Demo

https://www.youtube.com/watch?v=Az-I90RCns8

BlueBorne on Windows

CVE-2017-8628 – Bluetooth Pineapple – MITM Attack

- Same as Android, same flawed interpretation of specification
- Weakness in Personal Area Networking (PAN) profile
 - Used in tethering to establish an IP network
- Attacker can create malicious network interface, reconfigure IP routing, and force network traffic through malicious interface
- No user interaction, authentication, or pairing required (due to lack of authorization validation)

Windows MiTM Demo

🌒 armis

https://www.youtube.com/watch?v=QrHbZPO9Rnc

BlueBorne on Linux

Similar to Android, same flawed interpretation of specification

CVE-2017-1000250 – Information Leak Vulnerability

- Weakness in Service Discovery Protocol (SDP)
 - Used to identify services offered by neighboring devices
 - Attacker sends set of requests to service
 - Service discloses memory bits in reply
- Potential for attacker to recover encryption keys, eavesdrop on communication, etc...

BlueBorne on Linux

BlueBorne

- CVE-2017-1000251 Stack Overflow in BlueZ
- Stack overflow in Bluetooth stack in Linux kernel

- Weakness in Logical Link Control and Adaption Protocol (L2CAP)
- Attacker can cause memory corruption, and leverage that to gain full control of device

BlueBorne on iOS

BlueBorne

- CVE-2017-14315 Remote Code Execution
- Weakness in Low Energy Audio Protocol (LEAP)
 - Audio commands are not properly validated

Attacker can cause memory corruption, and leverage that to gain full control of device